
AO—A010 103 ODIERAL RESEARCH CORP SANTA BARBARA CALIF F~6 9~2
JAyS TECI IICAL REPORT. USER’S GUIDE. (U)
APR 77 C GAP*ION. N B BROOKS. R U URBAN F30602—76—C—0233

UNCLASSIFIED RADC—TR—77— —1 Pt

I _
I 1

_ _ A
I

L ‘IEJt]LJ’A
-

I ittLlàlSi____Maul

II
~

~~ I~II~ ~j 2.5II _______ ~~~ ~ 32 2.2

I.’ ~

1.25 fIIIIi•~ uhII~•o

MICROCOPY RESOLUTION T E ST CHAR T
NAIA) NAI BLJ!U At t~ t S t t ~ t [A

- —~~~~~~—•~~~~~—~~~ --— ~~—~~~--~~-~~~~~~~---- -

I
-

--—

RADC-TR-77-126, Volume I (of three)

~~~~ 
Report

JAVS TECHNICAL REPORT
User’s Guide

• General Resear ch Corporatio n

~~~ ~~~~ ~~~~~~~~CUPT A — * ~ ~_i r~PERMIT FULLY LEC~.LE P~O~UCTi~
• Approved for public release ; distribut ion unlimit ed .

D D C\~~H.$.

• • - • •

ROME
A ‘~

AM FORCE $YSTEMS COMMAND
ORIFFIU AIR FORCE BASE, NEW YORk 13441

_ H
I- ~

.-
~~~~~~ 

~~~ dø.
~~~~~~~~~.- - -~~- • T 1 ~~~~ • •  — •- -— •- • 

_ _ _



• 
, .-

~~ ~~~~ 
- • ________ • •

Some of the pages of this report are not of the highest printing quality
but because of economical consideration, it was determined in the best
interest of the government that they be used in this publication.

This report has been reviewed by the R.ADC Information Office (01)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

This report has been reviewed and approved for publication.

APPROVED : ~2~i~%1 .4 ~~ / 2oi~j~~
FRANK S. LA MONICA
Project Engineer

APPROVED : ~~~~
ROBERT D. K.RUTZ, Col, USA!
Chief , Information Sciences Division

FOR THE COMMANDER : ~~~~~~~ .~~~~~~~~~~j

JOHN P. HTJSS
Acting Chief , Plans Office

Ii

Do not return this copy. Retain or destroy.



MISSION
of

Rame Air Development Center

F
RAX plans and conducts research, exploratory and advanced
d.velopsent p rogr air~ in co and , control, and cos,~unications

• (C3)  activities, and in the C3 area. of inf orma tion sciences
• and intelligence. The principal technical mission areas

are co~~iunications, .1eotro~riagnet1c guidance and control ,
• surveillance of ground and aerospace obj .cts, int.lligence

data collection and handling, Inf ormation syst~~ technology,
Ionospheric pr opagation, solid state sciences, microwave
physics end electronic reliability, maintainability and
compatibility.

‘$4
o~.UTI4~~~(
~
)

It

I
I
‘

- -



________________________ 
• •~~

UNCLASSIFIED
SE C U RITY  C L A S S I F I C A T IO N  OF T HIS PAGE (1$ ’?,.,, Data ~tfl.red) 

_____________________________________

READ INSTR U CT I ONS
- ,  ~EP0RT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1• ~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~,, 
2. G~~VT AC CESSION NO. 3. R EC I P I E N T S  C A T A L O G  NUMBER

•~ RAD C7rR-~7 7— l 26 ~—vo ] .~~~~1 f three) ( ____________________________
.. •
,; ~~~. L TL and S,~bt 

. 
TVPf OF RfPOU1~

/ • Final 
~~~~~~~~~~~~~ ,~ep~~t

•

~

. ~~~~~~~~ TECHNI CAL REPORT • ~~~ May ~~ - Nov 76• t~ er ’ S Guide ~~~~~~~~~~~~~~~~~ ORG. JPORT NUMBER
_____ —. -•

__ N/A
• *. *~~T~kOR~s).- B. CONTRACT OR GRANT NUMBER(s)

.~~ •/ C. ;‘Gann on ~
• ~~~~~~~~~ N. B. Brodks /

fF~~~~~~~
_ C_d233 ! - ~~• / R. J. trban

/

• : ~~. PER~~ORMING O R G A N I Z A T I ON N A M E A N D ADDRESS tO. P R O G R A M ELEMEN T. PROJECT . TASK• A R E A & W ORK UNIT NUM BERS
General Research Corporation

-P. 0. Box 3587 —
• ~~~~~~• Santa Barbara CA 93105 ‘~ 555Q~838

I I C~~N T R O L L IN G OFFICE N A M E A N D ADDRESS ~~~ ~~~~~~~~~~~~~~~~~~~~~ — •

Rome Air Development Center (ISIM) •
• April ~~77 “(riffiss AFB NY 13441 ~~~~~~~~~ ‘~~i 7~T99

4 MONI T ORING AGENCY NAME & A DO RESSII I dillarent f r om Controlling Off ice) IS. SECU RI T~~ LA ~!r5r~mY1wppr~~~ ~~•~J

Same
UNCLASSIFIED
ISa . DE C L A S S I F I C A T I O N D O W N G R A D I N G

SC H EDULE
__ N/A
15. O IS T R I B U T I O N S T A T E M E N T (of this Report)

Approve~d for public release; distribution unlimited.

I, DISrR ISUT IO N S T A T E M E N T ‘.1 the ab,Irect entered In Block 20 , If different from Repor t)
Same

/1 -
/

lB. SU P P L E M E N T A R Y N OTE S

RADC Project Engineer:
Frank La Monica (ISIM)

19. KEY WORDS (Continu. on revere, side ii neces sary and td.n~Ify by block number)

Computer Software , Software Testing, Software Verification , JAyS, Automated
Verification System.

20 A B S T R A C T (Conttnus on r.,.r5S sids It neces,ary end identify by block number)

The JOVIAL Automated Verificatian System (JAy S) is a too l for analyzing source
programs written in the J3 dialect of the JOVIAL language. From the user ’s
viewpoint , JAVS consists of a sequence of processing steps which (1) analyze
his JOVIAL source text , (2) guide him in preparing test cases for his code ,
(3) analyze the results of tests executed by his code , and (4) automatically

• document his code.

The purpose of this document is to introduce the tester to JAtIS and to the~ —
FORM

~DD I JAN 73 •4$~J EDITION OF I NOV 63 IS OB SOLETE 1.!NCLASSIFIED
SECURIT Y C LA S S I F I CA T IO N OF T p.i IS PA G E (*~een Data Entered)

~~

.•-—•~~~

UNCLASSIFIED

SECURIT Y CLASSIFICATION OF THIS PAGE(Wh .n Data Ent.r.d)

process of software testing supported by JAVS. The information provided in this
guide on JAVS usage is intentionally limited to the beginning user. The
appendices provide the information necessary for operating JAVS at RADC and
can be referenced by the sophisticated as well as the beginning user. The
information presented on the testing methodology which JAVS supports is
applicable to both the beginning and sophisticated user of JAVS~~~

UNCLASSIFIE D

SECU RIT Y CLASSI F ICATION OF THIS PAGE(1Th.n Data Entered)

PREFACE

The purpose of this guide is to introduce the user into the realm of
automated testing. Software testing supported by an automated verification
system requires knowledge of two inseparable factors : the verification tool
and the testing methodology which the tool supports. The information concern-
ing the usage of JAVS is intentionally limited to the beginning user. The

• only prerequisite information is a knowledge of the JOVIAL language. The
• casual user should have good success in analyzing the behavior of his programs

using the description of JAVS capabilities and a few commands set forth in
• this guide. All job control and file information is presented in appendixes,

• along with estimates of processing time and core requirements.

The testing methodology which JAVS supports is described in this guide
because of its importance to JAVS users at all levels of expertise. Although
there is no single general methodology which applies to all testing situations ,
there are a number of important issues that even the beginning verification
tool user should recognize in order to make the testing experience successful.

“Section 10 of this guide focuses on software preparation for JAVS—supported
te~ting, testing goals , resources required , and testing strategy .

In the series of JAVS reports , this guide should be read first. The
information presented should enable the tester to become a new user of JAVS
at RADC . Once the user has experienced some of the capabilities that JAVS
offers, the JAVS Reference Manual should be used to supply the complete

S details of JAVS features and command language .

For more comprehensive treatment of software testing methodology not
restricted solely t~ JAVS—supported testing, the reader is referred to the
Methodology Report. This report describes experiences with using current
Automated Verification Systems , approaches to software quality , and advanced
AVS capabilities .

1, kclIII ~~~—¶
~~~ ~~~ S~~f l., 0

I 
~~: 

- —

CI~DE1

- 
I’ - I . 

• I ~it

iii 

_ _ _



-S ~~~~~~~~~~~~~~~~~

LIST OF JAV S REPORTS

• .JAVS Technical Report: Vol. 1, User ’s Guide. This report is an intro—
duction to using JAVS in the testing process. Its primary purpose is to acquaint

• the user with the innate potential of JAVS to aid in the program testing pro—
• cess so that art efficient approach to program verification can be undertaken.

Only the basic principles by which JAVS provides this assistance are discussed.
These give the user a level of understanding necessary to see the utility of
the system. The material on JAVS processing in the report is presented in the
order normally followed by the beginning JAVS user . Adequate testing can be
achieved using JAVS macro commands and the job streams presented in this guide.
The Appendices include a sussnary of all .JAV S co ands and a description of JAyS - 

- ,
operation at RADC with both sample command sets and sample job control state-
ments.

• JAVS Technical Report: Vol. 2, Reference Manual. This report describes
in detail JAVS processing and each of the JAVS commands. The Reference Manual
is intended to be used along with the User ’s Guide which contains the machine—
dependent information such as job control cardc and file allocation. Through-
out the Reference Manual, modules from a sample JOVIAL program are used in
the examples. Each JAVS command is explained in detail, and a sample of each
report produced by JAVS is included with the appronriate command. The report
is organized into two major parts: one describing the JAVS system and the
other containing the description of each JAVS command in alphabetical order.
The Appendices include a complete listing of all error messages directly
produced by JAVS processing.

• .JAV S Technical Report: Vol. 3, Methodology Report. This report describes
the methodology which underlies and is supported by JAyS. The methodology is
tailored to be largely independent of implementation and language. The dis-
cussion in the text is intended to be intuitive and demonstrative . Some
of the methodology is based upon the experience of using JAVS to test a large
information management system. A long—term growth path for automated verif i—
cation systems that supports the methodology is described.

• JAVS Computer Program Documentation: Vol. 1, System Design and Imp lemen-
tation. This report contains a description of JAVS software design , the organi-
zation and contents of the JAVS data base, and a description of the software
f or each JAVS component : its function , each of the modules in the component ,
and the global data structures used by the component. The report is intended
primarily as an informal reference for use in JAVS software maintenance as a
companion to the Software Analysis reports described below. Included in the
appendices are the templates for probe code inserted by instrumentation pro-
cessing for both structural and directive instrumentation and an alphabetical
list of all modules in the system (including system routines) with the formal
parameters and data type of each parameter.

• JAyS Computer Program Documentation: Vol. 2, Software Analysis. This
volume is a collection of computer output produced by JAVS standard processing
steps. The source for each co&nponent of the JMS software has been analyzed

iv

- -~~~~~ 
-

~~ ~~~
- --- —



to produce enhanced source listings of JAVS with indentation and control struc-
ture identification , inter—module dependence , all module invocations with formal
and actual parameters , module control structure , a cross reference of symbo~t
usage, tree report for each leading module, and report showing size of each
component. It is intended to be used with the System Design and Implementation

• Manual for JAVS software maintenance. The Software Analysis reports , on file
at RADC, are an excellent examp le of the use of JAVS for computer software’
documentation.

• JAVS Preprocessor for JOVIAL. This report , prepared for GRC by its sub—
• contractor , System Development Corporation (SDC), describes the software for

the JAVS—2 component: its origin as the GEN1 part of the SAM—D ED Comp iler ,
• the modifications made in GEN1 to adapt the code for JAVS—2 , the JAVS—2 code

modules , and the data structures. It contains excerpts of other SDC reports
on the SAM—D ED JOVIAL Compiler System . The report reflects the status of the
software for JAVS—2 as delivered by SDC to CRC in September 1974. The de-
scription of JAVS—2 software contained in the System Design and Integration
report reflects the status of .JAVS—2 as delivered to RADC by CRC in September
1975 and thereby supercedes the SDC report.

• JAVS Final Report. The final report for the project describes the im-
plementation and app lication of a methodology fc: systematically and comprehen-
sively testing computing software. The methodology utilizes the structure of
the software undergoing test as the basis for anlaysis by an automated verifi—
cation system (AVS). The report also evaluates JAVS as a tool for software
development and testing .

V



__ S.— —~~~~~--  ~~~
- - - - -

~~~~

CONTENT S

SECTION __

1 INTRODUCTION 1-1

1.1 User’s Guide Organization 1—1

1.2 JAVS Capabilities 1—1

1.3 JAVS Limitations 1—2

1.4 JAVS Organization 1—3

2 USING JAVS 2—1
2.1 Typ ical Step Sequence 2—2
2.2 Preliminary Steps 2—2

2.3 Command Structure 2—3

3 PRIMARY ANALYSIS 3—1

3.1 Tasks 3—1
3.2 Preliminary Analysis Input 3—1

3.3 Conunands 3—1

3.4 Primary Analysis Output 3—6

4 DOCUMENTATION 4-1

4.1. Documentation Input 4—1

4.2 Commands 4—1

4.3 Documentation Output 4 3

5 INSTRUMENTATION 5-1

5.1 Tasks 5— 1
• 5.2 Instrumentation Input 5—1

5.3 Commands 5— 1
5.4 Instrumentation Output 5—3

vi

=— ~~~ ~~~ -.~~~~~-- --- -- --~~~ —~~~~-~~~~~~~~~ - -~~~~~~~~~
-
~~
-- —-

~~~~~~~~~~~~~~



- - —  -_-~.---.,-_n,.. •_ =:- -~~ - —— - -—- --—5-- — .• - - - .  —S — ---__--.--—-----_—-—

CONTENTS (CONT.)

SECTI ON __________________________________________________________

6 TEST EXECUTION 6—1

6.1 Tasks 6— 1
6.2 References to Data Collection Routines and

• Test File Control 6—1
-
• 

. 
6.3 Test Case Identification and Test File Control 6—4

7 POST—TEST ANALYSIS 7—1

7.1 Tasks 7—1

7.2 Analyzer Input 7—1

7.3 Commands 7—1
-

• 7.4 Analyzer Output

8 RESTESTING ASSISTANCE 8—1

8.1 Retest ing Targets 8—1

8.2 Reaching Set Tasks 8—2

8.3 Reaching Set Input 8—2

8.4 Commands 8—2

8.5 Reaching Set Output 8—2

8.6 Proceeding from Reaching Sets 8—3

9 COMMAND S SU~4NARY 9—1

10 TESTING METHODOLOGY 10-1

10.1 Software Test Object 10—1

10.2 Test Resources 10—3

10.3 Test Goals 10—4

10.4 Testing Strategy 10—5

10.5 General Strategy 10—9

APPE NDIX A JAVS Command Summary A l

APPENDIX B JAVS Macro Commands B—i

APPENDIX C JAVS Files C—l

APPENDIX D SAMPLE JOB STREAMS FOR RADC D—l

APPENDIX E TIME AND SIZE ESTIMATIONS E—l

APPENDIX F JAVS INSTAL LATION REQUIREMENTS F—i

APPENDIX G JAVS UTILtZATIO~ CHECK LI ST G—l

INDEX I—i

REFERENCES R—l
vii

-~~~~~~~~~~~~~~~~~~~ ~~~~~~— - -~~~~~~~~- - ~~~~~~~~~~~~~~~~~~~~~~~~~ ---•-
~~~~~~~

- -
~~~~~
-• .

~~~~~~~
- - - -

~~
• - - - - --

-
~
5-5-

~~~••5-W ••_~~__~S L W  -• ~~~ 
_ 5?! -~~~~ •

ILLUSTRATIONS

1.1 Overview of the JAV S in the Testing Process 1—4

2.1 JAVS Processing Sequences 2—1

3.1 The Role of Primary Analysis in the Testing Process 3—2

3.2 Example of Structural Analysis 3—3

3.3 Pictorial Example of Structural Analysis 3—4

3.4 BASIC Output 3—5
3.5 STRUCTURAL Output 3—6

4.1 The Role of Documentation in the Testing Process 4— 2

4.2 Library—Wide Symbol Cross Reference 4—4
• 4.3 Internal Library Dependencies 4—5

4.4 External Library Dependencies 4—6

4.5 Library High — and Low—Level Modules 4—7

4.6 Module Listing 4— 8

4.7 Module Invocation Bands 4—9

4.8 Module Invocation Space 4—10

4.9 DD—Path Definitions 4—11
4.10 Control Flow Picture 4—12

5.1 The Role of Instrumentation in the Testing Process 5—2

6.1 The Role of Test Execution in the Testing Process 6—2

6.2 Test Execution Processing 6—3
6.3 COMPOOL for References to JAVS Data Collection Routines 6—4

7.1 The Role of Post—Test Analysis in the Testing Process 7—2
• 7.2 Module Statement Listing 7—4

7.3 Invocation and DD—Path Execution Summary 7—5

7.4 DD—Paths not Executed 7—6
7.5 Module Invocation Trace 7—7

7.6 DD—Path Coverage 7—8

8.1 Test Case Assistance REACHING SET 8—3

G.l Flowchart of JAVS utilization G-5

viii 

—5- rn - -~~ -~~ -- ---•5- —5 —-- •——-—-• • -——— -- - - 5----- -- -5--- - — “—5- —5 —5 - —



TABLES

-~~ 2.1 Relationship Between Commands and Tasks 2—3

6.1 Test File Data Control with PROBI 6—5

9.1 Command Summary 9—2

9.2 Sample Command Sets 9—2

C. 1 Files used in JAVS Processing C— 3

E. 1 File Size Est imation E— 2

E.2 CP Time Estimation E—3

F.l JAV S Installation at RADC F—2

F.2 JAVS Installation at SAC Headquarters F—3

ix

- - -~~~~~~~



- • - --- • -~~~ • - ~~~~~~~~~ • -
-• • - • •---- • • • -

•

• - - ---- 5-.- - — — -

EVALUATION

The purpose of this effort , identified in TPO V/4.2, was to enhance
the JOVIAL Automated Verification System (JAyS) and to implement a
systematic software testing program using the JAVS to assist in the

• testing process. Developed to aid in the testing and verification of
JOVIAL J3 programs, it provides the ability to increase the practical
reliabili ty of software by increasing the achieved level of tes t ing.

As a result of this e f f o r t , the JAVS was success ful ly  enhanced and
tuned for operational use. Included in its excellent supporting documenta—
tion is a refined methodology fo r testing large , comp lex sof tware systems .

:

~ 

~~~~

FRANK S. LA MONICA
Project Engineer

•~1

x

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
S

-
- • ~~~ L - ~~~--~~- 

j
~IlI



—S —~~~~~~~~~~~ ~~~~~~~~~~~ — -

1. INTRODUCTION

JAVS was developed as a tool to aid JOVIAL software developers and
t esters determine the extent to which their programs have been tested and to
assist in deriving additional test cases to ver ify the software . Up to now ,
test ing has been without an orderly approach and without accurate means to
dete rmine exactly what portions of code have been exercised. JAyS provides a
test ing approach and an automated tool for  measuring the effect iveness  of
test dat a in terms of program s t ruc ture .

1.1 USER ’S GUIDE ORGANIZATION

Section 1 of this guide introduces JAVS in the validation of JOVIAL soft—
ware. The overview description includes JAVS capabilities and limitations in
order to provide an assessment of what tasks are automated and what tasks the
software tester must undertake using JAVS reports as a guide. Section 1 also
contains a description of JAVS ’s organization in terms of the tasks it performs
and the accomplishment of the tasks through user commands .

Section 2 describes the utilization of JAVS: what preliminary steps need
to be taken and how to use the command language. Sections 3 through 8 describe
more specifically the processing steps taken in a typical validation effort.
Section 9 summarizes the commands , and Section 10 describes a testing strategy.
At this point the reader can become a JAyS user and consider a test plan for
his particular software. The appendixes will be needed to operate JAyS at
RADC. Appendix A contains a summa ry of all JAVS commands ; Appendix B contains
the expansion of the macro commands ; Appendix C describes the files used by
JAVS command sets; Appendix E contains estimations of processing time and file
size requirements , Appe ndix F contains the JAVS installation requirements for
RA.DC.

1.2 JAV S CAPABILITIES

Befo re proceeding, it shou ld be made clear what JAyS can and cannot do.
As a testing tool , JAVS p rovides trace and coverage reports showing program
behavior during a test .  Tracing can be performed , at user option , to show
module invocations and returns or to show which outcome was taken for  each
conditional operation in the program . In addition , the user can trace ‘impor—
tan t” events , such as overlay link loading, b y invoking one of the JAVS data
collection routines.  Test performance coverage reports showing statements

• and/or decision outways can be obtained on a per—module , pe r—test—case , and
per—test—run basis. These reports allow the user to focus on untested modules,
program paths , and statements.

If the t es t ing target  is determined to be a set of modules which received
little or no coverage during the test execution , JAVS reports can be obtained
to list all invocations (and the statement numbers of the calls) to the modules
and to show the modules ’ interactions with the rest of the system in terms of
calling trees and interact ion matr ices . If the test ing target is a segment of
code within a module , the user can request a JAVS report showing the statements
that  lead up to the target .  Armed with this “reaching set” report , the user
can spot key variables whose values a f f e c t  the flow through the program paths
and locate all instances of the variables in the system—wide cross reference .

1—1

• • ~~~~~~~~~~~~~~~ •~~~~~~~~~~ --~~~-— -•-•---—----~~--.- -— -- --5—.- .. ~~~~
_ .  •



Retesting may necessitate code changes in some of the modules in the
system to remove dead code or coding errors foun d during the test analysis .
To facilitate determining all modules in the system which could be affected
by the code changes, a JAVS report will show the interaction between the
selected set of modules and the rest of the system .

JAVS uses a data base to store information about the test program . The
availability and management of this information form the basis for a variety
of services in addition to the primary task of test ing assistance . Computer
program documentation, debugging through JAVS computation directives , and
reports useful for code optimization are the major  side benefits  of JAyS.

Computer documentation requirements for the Air Force typically specif y
flow charts and lists of program variables and constants. In the JAVS develop—
ment and implementation contracts these requirements were rep laced by specify ing
certain JAVS reports, i.e. self—documentation. It was found that the module
listings (enhanced by indentation and identification of decision points),
module control flow pictures , module invocation reports (showing formal and
actual parameter l ists),  module interdependence reports , and a cross—reference
report for each JAVS component are more meaningful documentation and are
generated automatically by JAyS .

Software development can be assisted by using JAVS to document and test
the system as it is built. To aid in data flow analysis and checking of
array sizes and variable execution values, JAVS offers computation directives.
The directives are a special form of JOVIAL comment, recognized by JAVS and
expanded into executable code (using the JOVIAL monitor statement) during the
instrumentation phase. The user can check logic expressions with an ASSERT
directive, check boundaries of selected variables with an EXPECT directive, and
turn on and off the standard monitor tracing with TRACE and OFFTRACE directives.
The computation directives are described in the Reference Manual.

Code optimization is aided by the post—test reports, which show the number
of t imes each statement is executed and the execution time (in C.? .  milli-
seconds) spent in the modules. Modules which are never called and should be
removed are listed in another JAVS report.

• 1.3 JAVS LIMITATIONS

Testing coverage results indicate what parts of the program were executed.
It is up to the user to determine if the program’s output is reasonable. One
of JAyS post—test analysis reports lists the execution coverage during the test

• run in terms of the percentage of decision outways taken. A decision outway
(decision—to—decision path , or DD—path) is the set of statements executed as
the result of the evaluation of a predicate (conditional operation). A good
standard for the testedness of a program is to exercise every decision outway
at least once. This level of testing is more rigorous than testing every
program statement at least once. However, it should be emphasized that certain
combinations of DD—paths may contain errors which are not detected in merely
executing each outway one time.

1—2 

5.— —-
~~

—-• -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


-- -5 - - -r -
~~~ ; 

5 ~~~~~~~~~~~~

-- - -

1.4 JAVS ORGANIZATION

JAyS reads the user’s JOVIAL program as data and performs syntax ,
V structur~al , and instrumentation analyses on the source code . JAVS communicates

with the user through a command language and utilizes a data base to store the
information about the program . The user is provided with an instrumented file
of the selected program modules with which the user supplies test data for

S execution. The execution results are written to a file from which JAVS ’s post—
• test analyzer issues execution tracing and coverage reports.

Six functional processes, in addition to execution with test data, make
up the substance of software validation provided by JAyS. The organization of
JAVS is defined by these six tasks. To reduce the burden of the user , JAVS
exists as an overlay program at RADC with a macro command language supp lementing
a large , versatile standard command language . The processing steps and their
basic functions are listed below :

BASIC, Source Text Analysis: Source text input , lexical analysis , and
initial source library creation

STRUCTURAL, Structural Analysis: Structural analysis and execution path
• iden t i f ica t ion ; l ibrary up date with s t ruc ture  and path information

INSTRUMENT, Module Instrumentation: Program instrumentation for path
coverage analysis and program performance directed by user; library
update with probe test instrumentation

ASSIST, Module Testing Assistance and Segment Analysis: Testing assistance
for improved program coverage

DEPENDENCE, Retesting Guidance and Analysis: Retesting requirements
analysis for changed modules

TEST EXECUTION: Execution of instrumented code and analysis of directed
program performance

ANALYZER, Test Effectiveness Measurement: Detailed analysis of program
path coverage ; execution traces and summary statistics

These steps need not be performed in the above order; other orders may be
preferable at times. An overview ot how JAV S is used in the testing process
is shown in Fig. 1.1.

1—3



- -•

I YOU R J OVI AL JOVIAL source code is input for processing and
analys is .  A special  form of comzi~ent (opt ional)

•5.SOURCE inserted by the user d i rec ts  JAVS processing for
zprogram performance analysis.

1 SOURCE TEXT 1 JAVS analyzes the code and gene ra tes a directed

I ANALYSIS , graph of the control structure.
BUILD I ST RUCT URAL The possible flow s  t h r o u g h  the program are
LIBRARY ANALYS I S determined . All p e r t i n e n t  data is stored in a

_________ _________ data base for later use. Additional or
changed source code causes an existing dat a
base to be updated.

PROBE MODULE n—. 
JAVS automatically inserts software probes

I N STRU ME~ 
into the source code to intercept and record
program flow during execution. A second type
of instrumentation is used to record statistics
on program performance according to directives
inserted by the user in the source.

I MODULE TES T I NG ~~~~~ 
JAy S provides a v a r i e t y  of services which assist

DOCUMENT ASSIS TAN CE AN D I 
in the e s t ab l i sh ing  of a cont inuing tes t ing  s t r a t —

____ ‘ SEGMENT !~ALYS IS , egy bo th  a t  the de ta i l ed  level with in  a nooule and

RETES T I NG GU IDA NCE a t  the module in terdependence  level .  Test cases

AND ANALYSIS 
j  

are constructed by the user .  Reports  can be used
as progra m documen ta t ion .

• i PROGRAM resu l t s  as well  as o u t p u t s  f rom the ins trumen—r TEST EXECU TIO N , 

~ 
Program execution provides normal computational

t a t i on .  S t r u c t u r a l  f low o u t p u t  is recorded forPE RFOR MAN CE la ter  post—tes t analysis by JAyS . User—directed
program per form ance  ou tpu t  is interspersed with
norma l program output.

JAVS includes detailed post—test analysisTESTI NG fac i l i t i e s  which prov I de measures of testin g
thoroughness , both individual ly and cumula—MEAS UREMENT tively for a set of test cases.

TES
~~~~

EcTIVENESS
r

The results are examined by the us er to dete~~ine
NO TEST GOALS

H IE VED if test goals have been met and testing isAC

YES
completed.

Figure 1.1. Overview of the JAVS in the Testing Process

1—4

/

2 USING JAVS

The process of program verification is best described by example. One
purpose of this User ’s Guide is to present an overview of JAV S capabilities
through example programs processed by the JAVS execution steps. It is impor—

V
tant to note that while there are six processing steps a given validation
effort may require use of only a few of these. The selection of appropriate
processes is largely a user decision , based upon his requirement for the
informat ion that the various steps provide. As each step is described ,
through example , the user will gain insight into its utility for his particular
needs. In order to develop a basic understanding of the processing sequences
to be utilized in the examples , Fig. 2.1 illustrates the potential JAV S processi ng
flows in terms of step interdependencies.

T E X T

Bu:LD LIBQ~Rv _____________

SF~~.CT ~ P~AL
A ,AL ~ S S

- ~ C~~~~E TE5T : , .G
i~ sTRJ ~~~rAT: c ~ ~~~~~~~~~~~~

I~~EsT DOC~ ME~iT
CF

~‘ SIR . ~E ‘~ T E D
• CC CE

TEST
~~~~~c~.~~~ESsj I 

-
~~~ - - ~~~~~~~~~~~~~~

• Figure 2.1. JAVS Processing Sequences

The user must provide three major types of input to JAVS: (1) the source
code to he tested , (2) a set of commands to direct JAVS processing, and (3)
test data for program execution . Section 2.2 describes the preparation of the

• source code for input to JAyS . Section 2.3 describes the rules for inputting
commands .

2—1

- - •
~~~~

-- -- - -  
5 - - ~~~

- - L.4



• •_
~~~ 

~~~_ __•~~~_~~_•~~~ .-,—- --__—-- -  - -

p 2.1 TYPICAL PROCESSING SEQUENCE

This guide is organized to lead the user through the following sequence
of steps:

1. Build a data base library containing source text and structural
analyses (Sec. 3).

2. Document the source text (Sec. 4).

3. Instrument the modules (Sec. 5).

4. Execute the program (Sec. 6).

5. Measure the test’s effectiveness (Sec. 7).

6. Retest the program (Sec. 8).

These steps provide the primary assistance needed to generate test cases
and measure the extent of program testing coverage as each test case is input
to the system.

2.2 PRELIMINARY STEPS

Before the source text to be verified is submitted to JAyS, the user
should take certain preliminary steps:

1. The source text should be compiled by a JOVIAL compiler to confirm
that it is free of any syntactical errors.

2. The program to be tested should have been previously executed with
test data necessary to ensure proper execution .

3. JAVS text identification directives should be inserted in the source
if there is more than one START—TERN sequence in the program .

4. JAVS computation directives should be inserted in the source if the
performance testing capability is utilized .

Both types of JAVS directives (a speci~l form of JOVIAL comment) are described
in detail in the JAVS Reference Manual . The JAVS text identification directive
is used to assign a unique name to a JOVIAL START—TERN sequence (program, sub—
program, or COMPOOL). If no text directive is assigned to a START—TERN sequence ,
the text name *NOJAVS* is assigned as a default. The computation directives are
used to make assertions about the behavior of the program and to verify the
value of specified variables without altering the logic of the program . These
directives can make valuable contributions in debugging and boundary conditions
testing. It is suggested that  the user acquire some fami l ia r i ty  with JAVS before
utilizing the computation directives. The Reference Manual (Sec. 1.5) describes
their capability and utilization .

2—2 

~~~~~ - ------ -- -—-— . - ~~~~~~ -


The following sections describe the recommended sequence of step
executions to be utilized by the beginning user. Although JAVS is capable
of processing very large JOVIAL programs , we recommend that the tester select
a modest program (several hundred JOVIAL statements or less) to use in his
first experience with JAVS processing. - -

•

2. 3 COMMAND STRUCTURE

The user directs JAVS processing by a set of commands. There are four
“macro ” commands which can be used with the JAVS 2.0 overlay program , in
addition to a variety of standard commands. Each macro command expands into
a set of commonly used standard JAyS commands. While both types of cotmnands
can be used together , the user is advised to be aware of the expansion of
the macros before combining commands. Table 2.1 shows the relationship
between macro commands, standard commands, and the processing tasks. Sections
3—8 describe each task, as well as the appropriate commands to use, and the
process of executing the test program is described in Sec. 6.

All commands are input one per card. Blanks are ignored , so the
co~ nands are free—form . The card scan ends with a period or with the end
of a card. If a cotmnan d requires more than one card , a comma must appear
at the last non—blank character of each card preceeding the continuation
card. Up to three continuation cards may be used. Each command consists of
a sequence of terms separated by a comma or an equals sign .

TABLE 2.1

• RELATIONSHIP BETWEEN COMMAND S AND TASKS

Mac ro Command Sta nda rd Command
Keyword Keyword Task

BUILD LIBRARY BASIC Syntax analysis
STRUCTUR AL Struc tural analysis

PROBE INSTRUMENT Structural and
computation
instrumentation

DOCUMENT ASSIST Module and inter—
PRINT module reports
DEPE NDENCE

TEST ANALYZER Post—test coverage
and trace analysis

2—3

—
-

3 PRIMA RY ANALYSIS

Prior to instrumentation , documentation , testing , or retesting , a set
of primary analyses must be performed . Syntax analysis is performed on the

V JOVIAL source program , transforming it into a format appropriate for storage
on a random—access data base (library file). Using the information on the
data base, structural analysis is performed on the executable modules , up-
dating the tables in the data base library . Structural analysis includes
building a directed program graph which is the basis for instrumentation and
testing analyses. The subject matter of this section , primary analysis , is
shown in the context of the testing process in Fig. 3.1.

3.1 TASKS

-
Syntax analysis consists of breaking—down each START—TERN sequence of

the JOVLAL source text into invokable modules. A data base library is
created containing internal tables representative of program text , statement
descriptions and symbol classification .

Structural analysis adds to the data base library a description of pro-
gram structure in terms of decision—to—decision paths. These paths represent
a unique and systematic ordering of all decision outways . Figures 3.2 and
3.3 illustrate the concept of DD—paths . A DD—path consists of all the
executable statements from a conditional statement to the next conditional
statement. Figure 3.2 shows the statement membership for each DD—path in
module EXAMPL. This module contains 12 DD—paths . Below each DD—path number
(listed across the page) is the order in which the statements are placed on

• each DD—path. For example , DD—pa th 2 consists of statements 15, 16, 29 , 30,
and 31 in that order.

3. 2 PR IMARY ANALYSIS INPUT
JAWS requires two input files for syntax analysis : the JOVIAL source

program in BCD mode on file READER (09) and the JAWS commands in BCD mode on
f i le CO~ 1AN (05). If the source program contains more than one START—TERN
sequence , or if the source text is a COMPOOL or requires a COMPOOL to compile,
the user must insert a JAVS text identification directive as the first state-
ment. This statement is described in Sec. 1.4 of the Reference Manual and
is shown in Figs. 3.2 and 3.4.

Input for structural analysis are the JAVS commands and the data base
l ibrary created during the syntax analysis.

3.3 C OMMANDS

Primary analysis can be accomplished by the single JAVS command :

BUILD LIBRARY [< name>].

This command expands into the following set of standard commands:

CREATE LIBRARY = <name> . (default name is TEST)

START.

3— 1

--

I
I — -

A

~
d •_ =

~~
t

V
(~~ Y 0U R JOVIAL j~~~~

.—. JOVIAL source code is input for processing and
• SOURCE analysis. A special for m of comnent (optional) ~

• ____________________ inserted by the user directs JAVS processing for
program performance analysis.

SOURCE TEXT h— JAyS analyzes the code and generates a directed
ANALYSIS graph of the control structure.

BUILD STRUCTURAL The possible flows through the program are
LIBRARY ANALYSIS deter mined. All pertinent data is stored in a

_________ da ta base for later use. Addit ional or

I changed source code causes an existing data

- - -

base to be updated.
• •

:-~~~~~~ ~ ‘.~ ‘S ouroc.ac~.caL~y ~cserts sc~ cwace p~cbe.
• - • - - - - ‘ - • • V . . - . - -— -, ~ ... ar o~~~~o d

ptc~zran ~~~~~ ~~~~~~~ e~~ec~~t io~-.. -~ e.~cc~ d type
1~ ~~~c~d to

~~~~~~~ ~~~~~~~~~ . .:. r.~ j I~~ ~~ .j~r~.:LtVo~
:!~sc-r:cd b7 rho usc-: to rho source.

‘~
, 4 ~ r .~ .. .~ ~ ~ ..5O

p -  --~ p p p p •~~., C’~’. •~ 
—

-~~ .~ ~~~ — 
— ~ 

. .~ — . — Soc ~
r r r C r . .. ~

:~:~~ A~A~~s!S 
•-~~•- — • -;~~~~~~ : ~~ o :. ~ c p G t r S  ~~

~ 

•;-~~•;•~~~~~~~~~~~~~
-
~~•~~~~•

——;-— ——— — — — -
~~~~~
__

“ og- ..s ~~~~~ ~ on ~-oj d cs ~~ci~~s~

~~~~~~ ~~ 
-‘ C V — 

, •~~ , • .. r~~:~~on. ~~~.c:ur~~ ±l~ w ~~~~~~ to rccor ~ od tot
_______ j J~:I~; I:’ -~~~~ t l.’~.j:-~ ~~V • TA S~~~. - -.~j j~ ,.~ tetJI p o~~~~.n p m ~~ cc o.~ p.. crSpC SO~

t 

- .

~~~~~~~ ~~~~~~ ~r~:~~.de3 deEi~~td T~~St tP5 E ~~~~~ >~~~3
.. ~- ..- — r ~, ..

~~~ ~~~~ 
P.~~~~I)’~

o: igooo so . bo ~~~~~~~~~~~ ~od c~.r.~ 2 a —
.~~

.._. :..L__ ....... 1tvi~iy ~~.r . . .t ~f ~~~~

-

~ ~~~
— “sc — nsj l .s  3— ~~ ~~~~~~~ ~~ -e .V., pr o da e—nS.ne

1f~~~~~~~~~ .,4i*j h3V~ ,~r •~.4t 41~~ t.~~ttu~ ii

Figure 3.1. The Role of Primary Analysis in the Testing Process

3—2

____________________ ________ ~~~~~~~~~~~~~~~~~~~~~~~~~~ — - -~~ — - -  - • • -- --~~~~~ ,-,~~~~~~ • -~~~~
- - —

~~~


p.— ~~~~~~~~~~~~~
— —- ~— — -—- - - - - -.- -. - • - • -

~

--—-- -------- - - — - -

~~~~

V State.a nt Eiecu tion Ord.r
SD—Path

1 2 3 4 5 6 7 8 9 10 11 12
• 1 . J A V S ?~~ T ~~~~~~ CO~~UT1 C C~~~0L )“

2 START
3 PRO ~~~~~. � O ’ L ( AA — 8 s ) $  1
4 IT~2 l U 7$

• S it 8 8 7 $

6 A&L~Y C C 2 2 ? $

7 St~ iM
I 316111 -- . -

9 +1 Q.~—o~j +10.1-001 flID

10 SWI M

11 +10.8-001 +10.1—001 ~ ID
12 riD

.13 sf6111 2
14 MON ITOR 83 • CC $
is zrt rn i  AA 1.5 00.8—00 1 $ 3 1 1
16 8 5 — — A A $ 2
17 cR1? AA 8Q 00.1—001 $ 2 1 1
iS 810111 2
19 8 8— 0 0 . E — 0 O 1 S 3
20 7 O R t — 0 ~~~1 . i $  4 2
21 BEG IN S 3
22 ?O R J .O , 1 .1$ 6 2 4
23 CC ($1 , J 8 ) —  00.1—COl $ 7 1,3 1 $
24 riD 2 1 1
25 P rElJRll $ 2

- 26 riD
27 0 8 1 7 1 $  2
25 5 B — A A $ 2
29 riD 3 3

30 ? O R E — 0 , 1 , i $  4 4 2
31 C C ( $ 1 .O $) — 3B / 20.E—001 $ 3 3 S 1,3

32 riD - - - 2

33 T~~1 $

Figure 3.2. Example of Structural Analysis

3— 3

-~



_ _ _ _  - - 
- 

—— - 

- 

I
PROC (3)

ORIF ( 1 7)

LOOP TEST (2 3)

~~~~~~~~~~~~ 

IFEITH (15)

OR I F 1
(27)

LOOP TEST (24)

LOOP TEST (31)

• END (32)

Num bers represent DD—paths

• Dots represent decision points
IFE ITH Words represent decision statement types

(31) Parenthetical numbers represent
statement numbers

I
Figure 3.3. Pictorial Example of Structural Analysis

3—4

_ _ _ _ _ _

.~~
—

*
“ JA VS T(XT (XAM PL COMPUTE (COMPOL)”

START
PROC E XAMP L (A A = 8 ~~) S
ITL U ** F S
ITEM BB FS
ARRAY CC 2 2 FS
BEGI N BEGIN 1• ‘ 1.0 (ND

BEGI N ~~ 1.0 END (ND
BEGI N
M O N I T O R 88. CCS
I F E I T M LA LS 0.05
B8 — AA S

• OR IF AL E Q 0 . 0 5
BEGIN
B B = 0 . O S
FOP I= 0,1 ,1S
BEGIN
FOR J= 0 ,1 ,1S
CC t SI ,JS) = 0.05

• END
RETUR NS
(ND
ORIF IS
BB AA S
END
FOR c=0 ,I ,IS
CC ($K ,OS) 88/2.05
END
TERMS

(XAM PL (EXAM PL) COM PLET ED.......
~ NO ERRORS wER E FOUND BY JAVS 2 ‘~~~

*• This statement is necessary to inform JAVS that a COMPOOL is being used.
See Sec . 1.4 of the JAVS Reference Manual for description of the text
identification statements.

Figure 3.4. BASIC Output

BASIC ,COMMENTS = OFF .
BASIC .

FOR LIBRARY.

STRUCTURAL.

END FOR .

END .

The actions taken by the macro command (or equivalent set of standard
commands) is to initialize the JAVS system with a library whose name is
<name> (or TEST if none is specified), process syntax analysis (BASIC) re-
moving JOVIAL comment statements , and perform structural analysis for all
modules on the newly created library.

There are several BASIC processing options , all described in the
Reference Manual. If the user wishes to exercise any of the options , to add

3— 5

L • - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~

- • ~~~-

the JOVIAL co ents in the source text to the library, or to perform stru c-
tural analysis on a subset of the modules , he cannot use the BUILD LIBRARY
macro command; ins t ead , the desired sequence of BASIC co ands must be
supplied . Section 5 of the Reference Manual contains sample cousnand sets
for each co and description.

3.4 PRIMARY ANALYSIS OUTPUT

The main output is a data base library file containing the source text
transformed into invokable modules and tables for other functional processing

- • and reports. Printed output consists of the card image listing of the JOVIAL
source code (this can be turned off with a BASIC option) along with JAyS
error messages, if any , and a few descriptive lines for each module stating
the number of DD—paths generated. If any syntax errors are printed adjacent
to the offending source text line, they should be scrutinized. A complete
list of JAVS errors is in Appendix B of the Reference Manual. Some errors
will require source code changes before further processing , and some errors
are syntactical warnings.

Figure 3.4 shows the syntax analysis output and Fig 3.5 shows s truc—
tural analysis outpu t for module EXAMPL.

JO VIA L AU TOMATED VERIFICATION SYSTEM ••~ SECONDARY MODULE ANALYSIS •~.

NODULE (XA ~’PL Or JAV ST E XT EXAMPL ,.
MO fl U LE DEPENDENCE TABLE CONST RUCTED.
ST a TEMENT DESC RIPTO R BLOC Ic S UPOAT ED .
DO— P A lM TABLE CONT A INS 12 ENTR iES.

Figure 3.5. STRUCTURAL Output

3—6

• - - -

4 DOCUMENTATION

Automated documentation , showing inter— and intra—module relationships , -;

is useful during the software development , testing , and maintenance stages.
Figure 4.1 shows the JAVS documentation activity in the context of the testing -

- -

p rocess. JAVS provides a wide variety of reports at user request. Some of
the reports pertain only to a selected module; others pertain to all modules
on a library . Seven of the most coi~ ionly requested types of reports are

-
~~ genera ted b y the macro command :

DOCUMENT .

This command expands into the following set of standard commands:

OLD LIBRARY = TEST.

START.

ASSIST ,CROSSRE F,LIBRARY . (Fig. 4.2)

DEPENDENCE ,GROUP ,LIBRARY . (Fig. 4.3)

DEPENDENCE ,CROUP ,AUXLIB . (Fig. 4.4)

DEPENDENCE ,SUNNARY. (Fig. 4.5)

FOR LIBRARY .

PRINT ,MODULE. (Fig. -..6)

DEPENDENCE,BANDS=5. (Fig. 4 . 7)

DEPENDENCE ,PR INT ,INVOKES . (Fig. 4.8)

END FOR.

END.

This collec tion of reports provides a static analysis of the individual
modules and of the interaction of the system of modules on the library.
Section 4.2 describes alternate or additional reports , and Sec . 4.3 shows
sample output of each report as well as a description of its utilization.

4.1 DOCUMENTATION INPUT

The data base library containing syntax and structural analyses along
with JAVS commands are the input for the software documentation process.

4.2 COMMANDS

The sing le command DOCUMENT will provide the seven types of reports
shown in Figs. 4.2—4.8. By mixing JAVS standard and macro commands , the
user can specify any combination of reports. A selection of documentation
cotmnand sets is:

• Obtain the three module documentation reports for a specified
JAVSTEXT (named START—TERN sequence), in addition to the four
library—wide reports.

DOCUMENT ,JAVSTEXT = <textname> .

4—1

- —~ •

-

- . • -. — - •

y- ~
- ’ •~~:’~~• ~~~— .~~VIAL YOUTtP tDdC 19 InpUt ~OT P DCCSSIS$ 304

I enal~~sie . A ~pec Lai !orm of coimt~r .t C .~~tt~~~l) ~-
~~~~p - t e d  ~v ~~~~ d I t ec ~~ ~~~~ proce ~ $:s$ for

-

• prcgr ~ a r f ~~rmdz~~e ~i..alysti.

.- - -~~~~~~~ 
~~~~~ 

S~~~~ .:,.~S ai~~lyzee the .~~.:e ~~~ ~enera tea • dire.ted
,.. • . A~iA :.~ S ZS . • 0 .. .~t tOnt Ol c uts .

• e . .O I ~~~~ I~~~si b ie !i~’w3 :nr~~g~ ~~~ ~~~~~~~~ are
dc c~~~~~td .1 pe- .occ . c..te .s ICC Cd ..c a

_______ ~~~~~ ~‘3.4C f nT .L1~t PT ~~~~~ A ltinnal or
- - C c ~~~ sc~ rce ~ C~ C C6~~6e6 C~ e~ j et~ c~ Gate

base to be updat ed .

— .~~ V . 3u:000tzcsl l~ tosc r ts sorru ~ ro probes
PPC E Ee~~ •:~

1• C ~~. C C~~ . ~~ T i

______ _________ p o ~~r~~e :Low rzo~ ~~cc~ c:oo. A seceod type
• :~ ‘ Ir~~~.; ~~~~~~~~~~~~~ ~,7~*<i t•~ ~ Pt~~~d

cc ~ c~~~rae perfcr ’ze’~ce accore~~c~ to Cirect iv ee
o~ the C: ~~ the sD.LttP.

MODULE TESTING i...— .IAVS p rovides a variety of services which assist
DOCUMENT ASSISTANCE AND in the establishing of a continuing testing strat—

~~~~~~~~
. SEGMENT ANALYSIS. egy both at the detailed level within a module and

RETESTING GUIDANCE i at the module interdependence level. Test cases

AND ANALYSI S are constructed by the user . Reports can be used
as program doc~men tation.

- -- I 
____________

..- ‘.— 

~~~~~~~ 
i.~~— ?rcgr ~~ t e t ~.or. ~~~~~~ ‘~-~-rna ’ icna~

• • •f-:~t•, ~~. . e o~ :pt~r.& tros~ the in~ crumeo—
t . t t~’r.. 5tr ~:~~~~:a: t~~ow o~~cp.~t t , ~ecord sd for

_____________________ ACtd t p ’ S t — tes t 3; l ;,t~. by ~~~~~~~ .~ er—dic ected
• 1 ~~~~~ :sa z’,rc.ent,. .‘~:pu t is .~n te;spersed with

Dctrna~ progron ?ut~ ut.

I—.—.— .P~VS ~n . l~•deg ~~~~~~~~~ p~~~:— :cs t analyat ,
~~ t .it ie5 w h t C h ;.~~--:~.~e .se.to~ r es . t

or~~~ nr.ess . ot ch :di~ 1Ju~~Uy &no
t ice~ y t t r a s e . of zes t cases.

The re~uIts are eaan~~cd by the ‘j~eT to ~cte~~ t:~e
~

it ce~ t goa:~ have beer. met ar.d testiog Ia
... , ~ooplst ed.

1~’ES

Figure 4.1. The Role of Documentation in the Testing Process

4—2

— _•------v--- •-- •
~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~ 

— 
- -  

.

-- ~_~• • •-~~~~~~

• • Obtain the three module documentation reports for  selected
modules of a specified JAVSTEXT , in addition to the four
library—wide reports.

• DOCUMENT ,JAVSTEXT = <textname> ,
MODULE = <name—l> ,. . . ,<name—n> .

• Specif y a library name (must be the sane as the created
• library name), and select the DD—path picture and definition

reports for all modules , in add ition to the seven macro
command reports.

• 
OLD LIBRARY = <libname> .

START.

DOCUMENT .

FOR LIBRARY .

PRINT ,~~JPATHS (Fig . 4.9)

ASSIST ,PICTURE. (Fig . 4.10)
END FOR.

• 4.3 DOCUMENTATION OUTPUT

Figures 4.2—4 .8 conta in s an p le output for the seven reports generated
by the JOC~~!ENT macro command . The first four reports are library—wide
reports; the last three reports (Figs. 4.6—4.8) are module reports. Figures
4.9 and 4.10 show sample output for the additional commands:

PR NT ,DDPATHS .

ASSIST ,PICTURE.

4-3

~ 

- ~ -- - — ---



(I.e.*i. ceoss •rrrarwcr LISTING

FOC WH OLE I 11*507
170001. MODUL E USED/SE7/DCFINITIOM I • INDICATES SET. 0 INDICaT ES DErII*ITION

GO ~ sPRO6M h o  re
CaRD ~~~~~~~~ 120 II’ 21 2? 23
LIM PLI £50011 I

£500060 ~ -5
LINPI? £* UPL2 I

£9.0060 21
(10013 C’~~~L ! 20

~ 1LL £10011 30 IS.
- I ID (10006.~ 50 15 El

10055 (iM~ 11 70 22’ 24’ 20
ITER I A EZ~~ OO 1 CD 10 IS 22
ITERI cI~ PI? 4.

(100060 60 oo p~ITE*?* £zPRoo..  co i i  IS 23
• 17(02 (x~I0~~ 5’

EIOCOGN 70 l I D  24
LI~ tLi  (5~~ L I 27 27 27 300

• 1.50(12 (SweLl 27 200
L I O T T I  E lMPt. l 1 30 9 10’ I?
110112 (eMS1.j I 40 11
NESAG E EIC000L so
NESSA G (SC000I 21 0

(swe ll 31• 33’ 35’ ~e
EXP~OGM I6• 17

0501 (XC0 N~L 10
(*00060 *6

0562 EIC000I. CD
EX OP L I 31

• NSG3 (SC000L 90
(500 11 33

MS~~ .XCO~Pt. 100
35

PI c i~ ““~ L i  270 20
00 1070 .iet. j 30

EI~ W OG M I sO 17
MEsOER £ Z ~~~0G~ 130 IC 19
Itsult E S M P L 2  so i i.  is’ *6 30 32

• (5001.3 5,
7*0(5 C Z ~~Po6M 13
7*0(6 £ & P H O ~ M *4

This report provides a symbol cross reference listing for all module s on
the libra ry. The symbol types are variables , file names , switch names , labels ,
and subprogram names. Adjacent to the statement number of the symbols appear-
ance is a flag (

~ or D) indicating setting or definition .

Figure 4.2. Library—Wide Symbol Cross Reference

4—4

_ _  - — ~~~~~~~~~~~~~~~ - - -



- 

- -

~~~~

- - • -

I

• L .IBR*R Y OEPENO (NC (TAA L ~
• — .

•
u .N •AAA C C C r ~((GGGLLMMNOO PP 5ST .
• N .y •DO TIk01 FPEET OUUUP 1U ~ vA G(.
• V.0 •CO(~t)RI~OART1COK V vIIOT M4 P~P.
• O.K •RTON KTRCXRCP K I4TOS LTPH .
• K .E • 0 T 0 P KR UP I.
• (.E. X K N.
• ~~..
• .

• • ADC R •. K XX
• ADOTO ” • . K K XX •
• RTOO . .
• C ID N T .
• C KRIc . . K
• CON TOK . . .
• DTOA
• (FA C • K • XX

• EPR XP • K
• • G (TB • . •

• G (TC •
‘0 1CR • K • K X .
• LOOK . K K • X X X •
• LUK • K K X X .X X .
• M UV1 . K .
.MIJV4 • K K .

• NPUT • K • K.
• OLOOK .X X X X X X X X K X X X K . K X X .
• OU TSA . .
.P RM •
• P VA L U • K .
• S ~~PTR • K

• SGNP • K X X
• TERM Z N • K K • •
•

The interaction of all modules on the data base libra ry is shown in this
square matrix. If the library contains all modules in the user ’ s program , this
report provides a concise , complete picture of the total internal module depen-
dencies. If the library contains a subset of the total program , this report
aids in determining what modules do not interact wi th the component and might
be better suited for another component. The modules are listed in alphabetical
order.

Figure 4.3. Internal Library Dependencies

4— 5

L. ~~~- -~~~~ • •~~ • • - -—-~~~~~~-- • - -_- -~~~~~~~~~~~ -- - - • •~~~• -• •---

A U X IL I A R Y L I R M A P Y O(P~ NOENCE T*8~~(
—

u s! •
•I.N •A B (FGG(H IIMMNM0 PPPP4~S Sw .
• N.V •CTQA(TVONNDDD UP PuU ETOYR .

• • V .0 •SUR TTCELM SB RBVU XT TMSBSA.
• O.K •THOA RA U SDbNNS2T X~ LQ STP•
• k, (.8 PLLRP R AU LSU Tru.
• ~.(. KO MX KTO POP.
• R. . P •
•
• ADC R .
• *00 10K • K XX •
.8700 .
• CIO NT • K •
• CKR K •
• C O NTOK . K K
• DTOB .
• E ~~AC .
• ERPKP . K * K .
• GETB • *

• G E ~1C • K

• GTc R .
• LOOIc • K K
• LU K • x

• • MIJVI •
• 01JV4 •

• • NPUT • K K X X K
• OLOO K . .
• OIJTSB •X * K XX XX K .
• PPM .
• PVA LU . K K •
• SB PTP •
• S G NP •
• TER M IN • K K K.

.

This report differs from the last one in that the invoked modules (listed
across the page) are not resident on the library . If the library allegedly
contains all modules in the program , the external modules should consist only
of system routines. If the library contains a component of the total program ,

• • this report show s the module invocation interfaces to othe r externals.

Figure 4.4. External Library Dependencies

~

--

~

-

~

-

~

- -

LIBR ARY DEPENDENCE SUMMARY ...

THE FOLLOW!N (’ PROCEDURES ARE NOT INVOKEn BY ANY M ODULE ON THE L IBRARY

LOO K

• TII(FOLLOWING PROCEDuRE S DO NOT INVOKE ANY MODU LE ON TH~ L IR R A R Y
(• PPOC~~DUR~~S 00 NOT INVO KE ANY MODU LES AT ALL P

C ON 10K
• O U T S d

GET R
GEIC
BT OO
CID NT
O TO R

Considering the modules on the libra ry as a pyramid representing theinvocati on hiera rchy of the modules , this report identifies the “top ” and“bottom ” modules in the system.

Figure 4.5. Library High— and Low—Level Modules

•

0

4—7

—
.~ -~—.------~ •--- • --~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

— -——----. -

MOOU1.(5751(4(07 LIS T ING

OD utC .f5a~~ & •. ja l$ TC I? .1100030 •. Pi.v~T MOOul~(•(*.50~~

NO. LVI ITATONON T DD—’AT$S CO~ VN0t.

I I 0) 55CC 1I~~PL1 ‘ L I M I T) • 1*0*72 9 I 1)
2 Ip 0(0*0

• 3 I I 11(0 ~ 1MIT I I 26 S $
S I II ITE M . I M I T ? 1 75 S ~S S %) 05061 019. 1. IsO 1 Ps S $
S) I) IT(M ‘(Su. ’ I 20 S S
7 I I) 171” 11.795 I 24 S S

• • I I) 50. 705Cr • 5(SU1.T ~~• ~ 9 I I) lO L l ’ 1 1 1 60 900 5 I 2— 39 1?
90 I 2) l I M I T) 5 99 1
II I II 51S,JI. T ~ 4 5
I? I 1) 105 1 • I • I • l I M IT) I ~Oa3

•
6 2 3 I 2) 0(620

Is 9 7) 50. EI•(CT • ‘(SUIT • I • S •a
) IS I 7) 0IL~ II I • i 3) • I I

I s 7) 5(5-IL? • I 0(SUI. T • I I # I $
• 9 7 I 2) 00. *15(0! • 5(5,19. 1 00 IC 00

~
II I 2) 005 J • I • I • 1.10171 $ 0003

~ IS I 3) 0(0)01 20 ~ 3) .5 (1051 a.
• 21 9 3) I ’ E T T S j 1.0 3 1 I 5. 1) 101!

1 22 I 0) tool S • J S
23 I 3) OSlO I $ I 5) 05*0
2 4 9 5)
70 3~ (40
20 I 3) .. IOEITN
27 9 3) S MIT C O PICK . 9 1*1(1.1 • 1.55(1.1 • 1.50(1.1 • 1.55(1.2 9 $
29 I 3) 6370 ‘ICK II 100*5 — I SI $ I 7 I I)

~ 24 I 3) L~ I(1.2. 100
GO t O (&~~ L3 S

~J 30 I 3) 1*0(1.1. I IZ• 131 Ir(I4”~~~I’EI TM SESULT IS S S
3) I SI “ (SS* G • 0502 $
3? 9 3 , 0SI~ 4(SULT (0 0 S 4 I s — 151 0010

4 33 I 5) M(555~ • ‘503 5
35 I 3) 0090 1 1 I I~~

) 00 10
35 I s) ‘(55*0 0 0566 1

j 35 I 3) 100
37 I 3) 55 IOE I T o •0
30 I 3) 0115,1? POINTS 0(5555 $ 1~ 0
30 4 3) (MG I 17— II)
4 0 I 2) 55 J 00

• 0) I 2’ (‘~ I 19• 20’
07 I I I OP I II
03 9 5.. 0(FTRSC(• 005,11.1 a.
S4 I I) (•dD

This module report is a listing of the source statements enhanced by the
control nesting level , indentation of each control level , decision points
flagged with their DD-path numbers , control statement abbreviations , and arrows
showing potential control transfers within and out of the module.

Figure 4.6. Module Listing

4—8

I •~~~~~~~~~
- —-

~~~~
• • - - - -  

- -

~~~~~~~~~~~~

- - -- -
~~~~~~~~~

-
~~~~~~~~~~~~~

- - • - - • • • • --=•••• • • • • •• • • - •
~~~~~



- ------ • _--•-- _--. .—-— ------—.---------
~
-—--- .~: ,. :~r:- :: • Wt. --

MO DULE INVOCATION SANDS

MODUL E N PUT ,, ,JAVS T(XT NPUT ,. PAR (NT MODUL E (OPUT 5

LEVEL —2 —1 0 I 2

NPUT
07CR A TO M

C000 (ROSA
LU~ 0100
O L OOK ERR OR

OLOO K OPt)?
LOOK S V S T E M D

• GI C A R O

P0~1K
TERMIN

8103
(00x0
I A L.

OF UT
S P liP

This report shows the selected module within the invocation hierarchy .
At the center is the specified module. Each successive band of modules from
the center to the left shows the calling modul es; each successive band to the
right shows the called modules. The left (calling) modules reside on the
library ; the ri ght (called) modules can include modules external to the JAVS
library . Five bands on each side of the specified module are display ed when
the DOCUflENT macro coman d is used. The band width is a user option . Within

• each band , the modules are listed alphabetically.

Figure 4.7. Module Invocation Bands

4—9

_ _  _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  
— - -

~~~~~~~



~~~~~~~~~~~~ - _Fi iT ~~~~~~~~~~~~~~~~~~~~~~~~ • • • - - • -

.

• -
~ 

—
~ 

—•—-- -

~

- .

~~~

—- -

NODULE INVOCAT ION SPACE...

MOD ULE ONPUT ,, J&VST EXT (NPUT ~~, PA R(MT MODU LE CNPUT

3 PROC NPUT S

INVOC ATI ONS 000M W ITH IN THIS MOOUL (

MODULE A TOM
• SlUT • 6$ 510$ I LYMCNT I

STW T a ~9 A TO M I STCTO p

MODULE (ROSA
SIMI • 29 ERA XR I $ I

MODU LE GTCARD
SlOT • Si OTCARO I • STATUS • CR01

MODULE PRX X
5101 • 79 POlK I HEL • 120 , EJCT I

MODU LE (ERM IN

SIM I s $9 TERN IN I I I

INVOCAT ION S TO T HIS MODULE ~R0M WITH IN L I B R A R Y

MODU LE 01CR
ST NT • 31 N PUY

MODU LE OLOO K
5101 s 11 9 NP UT
ST MT 5 306 N PU T
5(01 • 363 OqPU T

This module report shows all invocations , along with the statement
numbers , to and from the specified module. It is useful in examining actual
parameter usage .

Figure 4.8. Module Invocation Space

4—10

• -
— ~~~ - - ~~~~~~~~~~~~~~~~~

-
~~~~~

- 
~~~~-~~~~~ ••~~~• • • •~~ • . - .-..r.


000UL(DO .PATM DE F INITIO N LISTI N G

NODULE (Z~ P1.1 5, .)AVSIEIT (tA PROO M as OSRENT MODULE (EXP0000 ,

NO. LOL ST*t(I)EI41 D0.P&7H5 GENERA TED

1 1 0) PROC £XNPLI I L IM ITI , L IM IT2 9 3
•‘ 0D—P 5YH 1 IS PROCEDIPRE ENT RY

I I) i~~ L iN Z l1 GO ISO S
•‘ OD.PA 1M 2 IS IRUE BRANCH

0Ø.PAT M 3 IS FALSE BRA NCH

22 4 1) 000 ~ • 0 • I • L IM IT I S
13 I 2) BE GIN

14 I 2) FOR J • I • I • LIII?2 $
• IS 4 39 BEGIN

21 I 3) IFC ITM J LI 3 $
•• DO~ PATH A IS TRUF BRANC H
•. DO .PATH S IS FA L SE BRANC H

23 4 3) 0 0 1 1 1 1
•~ 00 .PAT H 6 IS TRI’ (BRANCH

2 5 4 3) (040

27 I 3) Sw ITCH PICK • I LABE LL • L’ULI • LA S EL O • LASEL2 I $
25 I 3) 0010 PICK II 100*5 — I SI S

0O~ PAto 1 15 5w ~~TCM OUT VA Y
•5 Of l .PA TH B IS ~ w ! T Cw O U T W A Y 2 -

•
•~~ O0.I’StII S IS SWIT CH OU ToSY 3
.5 0D.Pa? ,4 10 IS 5011 C M O U T W A Y
•• O0—Pa’o ~I IS SW ITCH O U T W A Y S

30 (3) LABELI .
IFETTU RESULT IS 4 S

~~ 00 0A T$ 2 2 IS IRt’(B R A N C H
•• 0D~ PA TM 23 IS FALS E ORA N C H

32 I 3) ORIF RESULT (0 s S
5’ 00 — PATH 14 j~ TPU(B RA NCH
•• DO.PAT H IS IS FALSE B RA NC H

34 I 3) O R i F I S
•‘ DO—PATH IS IS TRU(BRA NCH

36 I 3) EMO

39 I 3) (MD
•

•. oo— ~~s ’ , ~
? t s LOoP ON (OR SG & IN

OD— PA TH 10 IS (SCA ~(FOR L0O~

41 I 2) £00
A

•‘ DO— PAlM 19 13 LOO P 004 FOR AGA IN
•‘ 00 — PA TH 20 I S ESCAP E FOR L000

This report is useful for documentation purposes because it defines the
outways of all decisions and makes the decision points more visible by
omitting the intervening sequential statements. The last switch outway is
the “drop through” path.

Figure 4.9. DO—Path Definitions

4-11

:1
--

PICT URE .ITH ALL OO .DATwS.. .

MO O,j ~~(€ E * A ~
.P L 5 . J A V S T E I T c(BAM PL 5, PAR ~~ 4T MOIILA LE (EAAMPL S

5 l ’ •T CT M I
Id • NEGIS4 , E • ~ Nfl• S a ~ EL F — L O O P I TY T ’ E ~ O . 00— PITH NUM9ERS ...

• POOC 3’ 0 1
S

IFE I iss EB~ ~ 3
4.

(OOjF 17’ 0eE~ ~
•4 •

ES (AcUT 23’ (.~~e 6 7
• 4 5 5
B ((NO 24) M.t. q

e4 4
(O R I F 21’ •.~~ F 10

5,.

S (ASOT 3j .ELB 11 12
• .

‘END 32’ C (

This report pictorially illustrates the program flow between decisio ns
in the module. Each B -- E sequence is a single decisio n outway ; each out-
way is assigned the unique DO-path number shown at the right of the report.
Any control fl ow which starts and ends on the same statement number (as in
the decisions to “loop again ” on JOVIAL FOR statements) is marked with an S
for a self- loop.

Figure 4.10. Control Flow Picture

4—12

— -‘
—-- -

~~~~~ .~
- .  — •— .-

~ ~~~~ 

—-

~ ~
.— —•w-- - 

— ——

5 INSTRUMENTATION
JAyS instrumentation automatically inserts a set of probe statements

into each module to capture control and record information during execution . -

The module can be compiled in instrumented form and used in Test Execution.
The probed modules are logically equivalent to the original source. Instru-
mentat ion can be performed before  or a f t e r  the documen tation repor ts have
been obtained. Figure 5.1 shows the role of instrumentation in the context
of the testing process.

5.1 TASKS

The re are two types of instrumentation:

1. Structural Instrumentation. Software probes are inserted into
the source text at each invocation point , each re turn poin t , and
each statement which begins a DD—path. Each probe includes a
call to special data collection routines which capture and record
information concerning flow of con trol in the executing
module(s).

2. JAVS Directive Instrumentation. Software probes which monitor
the results of assignment and exchange statements during Test
Execution are inserted in the source text where the user has
placed JAVS computation directives (Sec. 1.5 of the Reference
Manual). Each directive controls execution—time output which is
interspersed with normal program output.

In addition to the structural probes , software probes are inserted to
indicate a new test case and to indicate the end of the test. The instru-
mented source is written onto the LPUNCH file, where it can be input to the
JOVIAL compiler. During execution of the instrumented program (Test
Execution) , the data collection probes record on an audit file which is
analyzed by JAVS to provide execution tracing and coverage reports.

5.2 INSTRUMENTATION INPUT

JAVS instrumentation requires the data base containing syntax and
struc tural analyses for all modules being instrumented plus a set of commands
to direct the instrumentation .

5.3 COMMANDS

The macro command

(1) PR OBE ,JAVSTEXT = <tex t  name> .

causes all modules in the named JAVSTEXT (START—TERM sequence) to be
instrumented and written to file LPUNCH for compilation . The above
macro command expands into the following standard commands:

(2 )  OLD LIBRARY = TEST.

START.

3—1 

- -~~ -- - - - - —
~~~~~~ 

- - ~~--~~~~~~~~- - -
~~
-— --

~~~~~



.~V~AL r~—— JCV~AL source ~ode Is ~~~~~~ f9r  pr cce.sing m d
~~ 4 1 v5~~~ I s ’ecio ~ f r ~ of ~~~c’~c~~t ¶ o~’t i.~Qa l) ~~- • o ~-~~~t ed by the ~~cr diCec ts .JAVS processin g far
~‘ro~ ra2s perzoro?.nce analysis .

-‘ SC~u~CE T~AT Th— iAVS ~ira1y:es t~ e ~~~ i~1~d ~~re tes a directed
) •. ~ -. A~ LYSi~. 

p - .~p~: ~-f tre CcO~ rO1 :‘c :-uc ture.
The pca a~~ble t1.~ws ~~~~~~~~~~ tne prograz are

• L . ~i-.~Y 
~~~~~~~~~~~ 

te~~~ :’ad . All p~~~~~~~n t data Is atored in a
‘ _________ ~ at ~ ~‘ase for later use . Ad.±~~t1or.ai or

~~~~~~~~~ ~‘ource ccd e causes Ofl exis Cing data
• base to ba undated.

EMODULE 
• j•~ —~~ JAVS automatically inserts software probes

PROB E INSTRUMENTATION into the source code to interce pt and record
. .... _.j program flow during execution. A second type

of ins tru mentation is used to record statistics
on program performance accord ing to directive .
inser ted by the user in the sourc e.

-ì )
~J~.E ;~~~ :N ‘ -~~~ —— ~~~~~ ~~~~~~~~~~ ~~~~~~ o~ ~~~~

- -
~~‘ ‘ - ~~~~ ~~~~~

• ?4 )OC~)M~NT AS$ ~~~~~~ ,y~~ ~< ~ S ‘.91 ~~~~::~ : - 4 - -;r ::~ ::~c c,~ ~~
— ~ ~~~~~ ,, ~ 

p ~~
- 

~~~ ~ .~ j  ~~~~~ 40 ..

~ c ~~~ o - ~~-, ~c Le, ~:o~~1e; .~
-
~~c:’ :e lc~-’c 1 - T~ -~~~t c~ sc.~

~~~~ ~:-~~Ly~~is • ~~~~- .:‘~‘:~ -;: ~~~~~~~~~~~~~~~~ - ?‘~- o ~ ts - , • • .‘

A ~~~ ~~~~~~ ~- ; ~~:~‘~j : : : r . .

? ~
- 
~~ 

,-
~~~

. ~~~ ~ e t d s oroa . O~~rj t a ‘r 0~~

~~~~~~~~~ ~~~~~~~~~ f.~. ~~~~~ ~~ ~~~~~~~~~ £ C O 7 ~ ~~ A
~ i t L O ?  •~~~:t~~~ü c~~~~~~~~ rut iS r Or 1O~ for

___________________ ~~~~~~~~~ ~~~~~~~ ~~~~~~~ -~~ ‘ - - , . .~~~ r . . e c to~
~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~ ~~

- ~~~~ ‘~ ersed wit h
norc ’,~ :~~~~-am ot ’ r.p::t.

~~~~~ ~~ ~~es ~~~~~~~~~~~~~~~ p :-- c~~at  ~•ii~~~
i W i .-~ w ’ c ~- ?rO ~, !.da • r e,  ~ f t est ing

E’ ~r~ p ,- ~~~~~~~~~~ oOt r .‘ J ~~ .‘ 3.d
~ 9~~t Of 1i~ct CetGP *.

.<. ~~~~ The :a9 l~~~ ‘.re c~xom~ nad ~ ~~-e ~ ac c~’ da~ er~joe
i~ .:O - T  ~ C)41S ~~~~~ ~ aO~’ met o:’d t est i ng ts

-.-.
‘,—
.—
,- 

~~ o,~~e ted .

~ES

Figure 5.1. The Role of Instrumentation in the Testing Process

5—2

_ _ _



I

JAVSTEXT = <text name> . -
•

FOR JAVSTEXT .

INSTRUMENT. •

END FOR.

PUNCH ,JAVSTEXT = <text name> ,INSTRUMENTED = ALL.

END.
I

Since the JOCIT JOVIAl compiler at RADC accepts only one START—TERN
sequence in a single comp ilation activity , it is recommended that the user
instrument only one JAVSTEXT per JAVS run ; i.e., use only one PROBE macro
command .

Prior to execution of the instrumented modules , the user must specify
the test initialization and termination by invoking one of the JAyS data
collection routines. The insertion of these invocation statements can be
performed manually or automatically by using the following commands during
instrumentation :

(3) OLD LIBRARY = <libnaine> .

START .

PROBI ,STARTTEST = <module name> ,<text name> ,
<statement no.> ,<test nazne> ,<trac ing level> .

PROZI ,STOPTEST = <module naine> ,<text name> ,
• <statement no.> .

PROBE ,JAVSTEXT = <text name’.

PRINT ,JAVSTEXT = <text narne’, INSTRUMENTED ALL.

All of the command rules associated with this set of instrumentation commands
are descr ibed in Appendix B. A description of the PROBI command and its
options is in Sec . B.2.4.

I
’

S~4 INSTRUMENTATION OUTPUT
- 

~ The primary output is the instrumented source code which is normally
w~ i t t~en to the LPUNCH file [note the PUNCH command in the expansion of the
PROBE’ ziacro in Sec . 5.3 (2)] during the instrumentation process. At user

~e.qt*st,~ the instrumented source code can be saved on the library to be
written~ to LPUNCH at a later time .

Printed output from instrumentation consists of a short description of
each probed module to inform the user of the extent of instrumentation per—
formed (see Sec . 4.4.3 of the Reference Manual for instrumentation options).
The use~ can request that the probed text be printed at the end of the thstru—
mentation activity, or at any later time if the probed code was saved on the
l ibrary,  by using the PRINT command in Sec. 5.3 (3).

- 5—3 



6 TEST EXECUTION

Once the JOVIAL source code has been instrumented by JAyS, either before
or after obtaining the documentation reports , the instrumented code can be
executed with test data. Figure 6.1 shows the Test Execution process in the
context of the entire testing process.

The instrumented source code output on file LPUNCH is comp iled with a
COMPOOL which supplies definitions for the JAVS data collection procedures.
The compiled code is then loaded with the JAVS data collection procedures
from the JAVS object code library and any other externals which are necessary.

• During Test Execution the program operates normally,  reading its own data and
writing its own outputs. The instrumented modules call the data collection
routines which record on the test file , AUDIT , an execution trace and accumu-
lated data on module invocations and DD—path traversals. Performance data
resulting from JAVS computation directives are interspersed with normal pro-
gram output to the printer . (See Sec. 1.5 in the Reference Manual.) The
data base library is not used during Test Execution .

Each Test Execution may consist of a number of test cases. The program
identifies the start of each new test case by executing a call to one of the
data collection routines (PROBI); the end of all test cases is similarly
treated . These identification calls are automatically inser ted by us ing the -

PROB I ,STARTTEST and PROBI ,STOPTEST commands during ins trumen tation or are
• manually inserted by the user in the program prior to compilation ; all other

instrumentation of the source is performed automatically.

6.1 TASKS
Test Execution differs from normal execution of the program in four

respects:

1. Some or all of the program has been instrumented .

2. Test case boundaries are identified .

3. The instrumented code is compiled with a JAVS COMPOOL.

4. Data collection routines are added to the load sequence.

Figure 6.2 shows a diagram of the Test Execution process. 
-

•

6.2 REFERENCES TO DATA COLLECTION ROUTINES AND TEST FILE

• The instrumented source contains invocations of the data collection
procedures which were not in the original user source . If the user ’s program
has a COMPOOL, the procedure declarations for the JAVS data collection routine
(PRO BM , PROBE , PROB I , and PROBD) must be added to the COM~OOL. If the program
has no COMPOOL , the one shown in Fig. 6.3 should be used. This is necessary
in order to comp ile the instrumented source without compilation errors .

*If the JOVIAL comp ii.~r accepts a list of processed COMPOOLs while compilingexecutable mod ules , then the one shown in Fig. 6.3 must be included . The
.JOCIT compiler requires the FILE declaration to be in the COMPOOL.

6— 1

--
~~~~~~~~~~~~~~~~ •.


) ~~~~~~~~~~~~~~~~~ ~~~ ~~~ :.:a co- c :-° ‘.u~~f.r r r • :c ~~~oing ~~~~~~

:•~~~~ ~~~~~~~ A :- -o ~-~~ f~ :-t ~~ •-o~~ c : c , ‘c~ . n a ~~ ~
—

~ _._.._..., ~ - r t .~’. ~y c’~~~~ :or ~~~~~~~ ii.V5 pro~c~ ai:tg for
r~~ • :~~~ :c ar~~~~~ts.

~~~~~~~~~~~~~~ ~~~ t~~c • 3 ~ < 4f~~

~~~~~~ ~ -:~~ I ,;~~ :• r  ~~~ ~c:~- ~:‘ ;~~c t.: a.
~ ~ /f

t •p.~• •
~~~~~~ ~ 

d~~t &rc ~ no.~. ‘.11 cert i~:c:tt ~~ a it ~ t~-r 9.~ it. a

d:.co b ,~ t ror l.ct~~ ~~~~~ ‘,:d~ ti~ r.3l c’c
• • 4 I .~ d ao~r:-a •:ocr.~ ~~~~~~ ~~ ~x~.- t i r .~ data

• ~~ ~-e ,~p .~o::ed .

—s’——— JAV~ c tct~~~~ c-a~~~; io:-.~ t~ sofc~.’a:4 p;-ob.~
‘~ ‘

~ ‘r r, r~. ‘ -‘ .‘ -~~ ‘
. ~ -p 

— ___-p ~~~ C~~••~d thi: - _ .~~ c~i::~~~c. s~ ccc~d ry .r.
.~~ ~ t ’ ,t ~~I~~ 4t iC~ ~ sc: .: ~‘ -~~~cd o: .ttio ~~~;~~: ::4o :or ~O2r.~ 4 ~~ •:: -

~ at:

-‘ ~~~~ tt~cd ~~r ~~~ c,c-t~-r j r , r :ur. :c .$
• :4 ~~~~;j~~~ ~~

; -  
~~~~ 

r~~—— -~~
-
~~~ ~~: - : ~~~~~ :- ~ - c : ~~c; •:: - or-  -: :- .t~~:~~ : :~‘:9it:

A : ’ : ~~C~ 
i.~

• 
~~ ~ : - ~ : 4 ;

~~ - - ~-g  9 f ~ ~~~~~~~~~ - -;~~~r~ o :__
~~~~, .:‘ ; ~p:~~~~ -: ~ -:v ~:c ~ :~ t: ’c ~~~~ .~ d ~~~-~~‘ ~ ‘~~ r ~ ~~~~~~~~~~~

~E : ~~~~~~t~
-
~~ ~;~ca — c-

~~~~~~~~~~ ‘- -~~~~~~~ 2 > - ~~~~~~~ 
‘
~~~~~~

. -~~~~

,• . “• ‘~~~~~
-.~~~~~ •- ~~1. : - - ; : ; - ~~ ~v t~~.: :t >r. ~~~c r t ~ c~~r• ~

~

:- 2’- 6 ’-~

TEST EXECUTION . i-..——— Program e~cecut ion provides normal computat ional
PROGRAM resu lts as well as outputs from the instrtm~en—

PERFORMANCE tation. Structural flow output is recorded for
•__________________ later post—test analysis by JAVS . User—directed

program performance ou tpu t is interspersed with
normal program output.

•
?- ~~

-
~~~ •r ~~~Th-~~——— AV~ ~ ti~ck~, d~~ t 3  ‘.~~~ d ‘ - t ~

..t  o;:o~~~ is
F r  4 1 r .‘ ~~~ ~fC I f

r~ ~~~~~~ 
•-~ ~i ~~~~~~~~~~~~ ~~~~~~~ 

, -
~~

, 
~
., 

~~~~~~~ ~ p •e’ r ’~~ _p,j
L • :: tv.c~ -J fo:- ~, s~~c •~t t~ ct .

-
~~ —

--
--

..-.-.--.-
•_ -~ ~~ :- ~~~~~~~ --..
•. ~~~~~~~~~~~~ ,.~~~~

— TI~e tt~~,it, 3re £ (4tir .A~~ hy t~’e • :oac cc ’ datert t toa
•9~ ~•~~

jpj ~-~~-.e bc-a~ oa t o x c ~: -ti.~~ t~...•....—
,-•-•

YES

Figu re 6.1. The Role of Test Execution in the Testing Process

6—2

— -

~

--

~

~~
- -- . -

~~~~~~~~~
- -

~~~~~~~~~
-- -

~~~~
- -



‘ ‘  — — ~~~~~~~~~ ‘ ~~ ‘ — 

- 

- ——

( INSTRUMENTED 7 (NON-INSTRUMENTED1 ( JAVS-6 DATA

[ 

USER so uRcEef USER SOURCE~ 
COLL.ECTION

/ JOVIAL
COMPILER

1~

I OBJECT
TEXT

flINSIRUMENI

TEST 1X 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

L
~~~~~~~ ORTSJ~~~

”

* 

~~~~~~~~~ O3E ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

y z ER

FROM INSTR UMENT

MAY ALSO C ONTAIN CALLS TO PR OBI AND PROBD

Figure 6.2. Test Execution Processing

6—3

- -• --~~

•..jav STERT PRC$ %. PRESET • COMPOOI. roe psoat aNA~ y sIs DUMINO EZ (CUT ION
p 00

START I
oErt Nt INTG 0. I 24 S $0 $
DC~ INC M~.L $0 •4 4 0
otriNt O INTG I 48 5 50 $
CEFINE O$LL •~ P~ 8 ~ 0 S

~~oc peoos NooNAM,JA vtzT.Nooes s
BEGIN
IT t ” M~DNAM O’4LI. $
ITEM JLVT*T OMIL S- I T EM NflOPS INTO S
END
PROC peoBE I MO D NA M , J A V TZ T . DD P) $
BEGIN
ITEM M r~DNAM DMLL 5
ITEM jay tOT OM L L S
I T E M D~P INTO S
END
PROC PROBI (T ES NA M .T F L* G I $
BEGIN
ITEM T E SNA M DNL L $
ITEM TrL AG INT O S
END
PROC Peo$DILINE .FLAG)$
BEGIN
ITE M LINE H 80 8
ITEM FL A t ’ INT O S

COMMON PR O BE F $ SO CO MM O N BL OC K F OR PROBE F le tos

FiLE A UD IT 8 84 R 0 VI OK) V IZ!) V (52) v x3) V(EO F) 08$
£ NO

T ERM S

Figure 6.3. COMPOOL for References to JAVS Data Collection Routines

A FILE declaration for the test file AUDIT (08) must also appear. The
location of the FILE declaration (i.e., in a COMPOOL or in the main program)
and its format are dependent on the JOVIAL compiler being used. The example
in Fig. 6.3 is for RADC.

Job st reams for compiling the ins t rumen ted source code , loading, and
execu ting are given in Appendix D. Test Execution operates without the JAVS
environment , excep t for the data collection routines . Thus, there are no
JAV S cotmnands , da ta base library or JAVS reports associated with this process.

6.3 TEST CASE IDENTIFICATION AND TEST FILE CONTROL

At appropriate places in the instrumented source program (i.e., where a
new test case begins and at the end of all test cases) a call to PROBI must be
inser ted. PROBI performs two services: it identifies each test case and
controls the recording of data on the test file . PROBI has two parameters:
the first is used as a test case name on ANALYZER reports and is a Hollerith
name of eight charac ters ; the second is used to control the amount of data
actually recorded on the test file.

6—4

- —_al~~~~---- ‘ ‘~r ________ -
- -

- - -—- -— -. -~~ ~~ —--. -- - -— — . .— ~~~~~~~~~~~~~ ,- —
1, ,_~iiiI~

-
-

~~~~~~~~~~~~~~~~~~~~~~~~~

- - - -------

The possible values for the test f i le  control parameter TFLAG are shown
in Table 6.1. A Zero value signals the end of all test cases. A non—zero
value signals the start  of a new test case (and the end of the previous test
case , if any) . The value of the second pa rameter (if nonzero) determines the
amoun t of execution tracing. If TFLAG is 1, no t racing is mainta ined;  if 

-TFI.AG is 2, invocations and returns are traced; if TFLAG is 3, invocations ,
returns, and DD—paths are traced.

TABLE 6.1

TEST FILE DATA CONTROL WITH PROBI

TFLAG SIGNAL TEST-FILE DATA RECORDED ANALYZER REPORT OPTIONS

0 end—of—test (last) test case summary
file

1 new test test—case summary SU~~1ARY , HIT , NOTHIT ,
case MOD LST , DDPATHS

2 new test test—case summary, module SL’I~NARY , HIT , NOTHIT ,
case invocat ion/re turn  trace .MODLST , TIME , MODTRACE ,

DDPATHS

3 new test test—case summary , module SI2~-1ARY , HIT , NOTHIT ,
case invocation/teturn trace, MODLST , T IME , MODTRACE ,

DD—pa th execution trace DDPTRACE , DDPATHS

6-5



7 POST-TEST ANALYSIS

The Test Effectiveness Measurement Analyzer provides a detailed and
comprehensive analysis of testing coverage. ANALYZER (JAyS standard command
keyword for  this functional process) generates reports on execution tracing , -

cove r age , timing and paths  not tak en. The ANALYZER Process is the end of one
revolution in the automated testing cycle. Armed with the JAVS reports show—

• ing the program ’s execution behavior , the tester can determine whether  f u r t h e r
test ing is necessary . Figure 7. 1 shows where the post—test analysis fits
into the testing process.

7.1 TASKS

AN ALYZER reads the AUDIT file which wa~. generated and saved during Test
Execution . Structural data are input from the data base library , and var ious
reports are produced at user request which show the extent of program cover-
age provided by the test cases.

7.2 ANALYZER INPUT

The data base library, containing syntax and structural analyses , along
with the execution trace (AUDIT) file and JAyS commands are input for post—
te st anal y sis .

7.3 COMMANDS

The JAyS command set

OLD LIBRARY = <libname> .

START.

ANALYZER ,MODLST.

TEST .

provides a collection of reports useful as the preliminary test effectiveness
measurem ent. These reports contain statement coverage , execution tracing of
modules , DD—paths not taken , and a summary of invocation and DD—path infor-
mation by test case. The above ccmxnand set expands into the following JAVS
standard commands:

OLD LIBRARY = < libnam e> .

START.

ANALYZER ,MODLST. (Fig. 7.2)

ANALYZER ,ALL ~1ODULES .
ANALYZER ,SUMMARY. (Fig . 7 .3 )

ANALYZER ,NOTHIT. (Fig. 7.—.)

ANALYZER ,MODTRACE. (Fig. 7.5)

ANALYZER.

END.

7—1 

--- ~~~~ - -~~~-



- - -— - - - --
~~~~~~~~~~~

-
~~

~~

-
~~~~~~~~~~~

4

V.
~~~

R ‘OV’AL ~-..—.-. JOVT.AL acu rca coda is tn~~~c for processiog and
analy sis . A 5paCiai f.:rm of co~rccnt ~orcionsl) ~

____________________ in~erted bv the u:~ac directs MVS proceecini fOr ‘7

- ,

-

-
. pro~ taa l oroanca ar.3151i9.

~L~~CE TEXT ~ ~~~ ~~~~~~ t~~e ~~de a~d gener stes • dir e. ced
1 aplt of the ec nt c oi stcuct.~re.

, 13 C~~~L ~ p sa ~ te ~~ws
~ g” r~ p pro~~~~ are

L
~

c .A.r Y AN 6LYS~S I ~!ctarmtrtad . All ~ ~~ta is stor ed ja a
da ta ~ase for lacer use . Ad~ ittor .al or

~~
- - - c~~~~ eci source ~~~ causes an e~~atiO~ dac a

base to ba updated.

r~
—. ‘,~vs .aut omacica ilv inserts softw a re pros e.

i~~T rATTON 1 ir .to the source co.~e to incer capt and record
pro gram flow ~~~~ tn~ exec’jttoi:. A sacor.d type
of ~nstrtcsencat~.~n ta uacd to reccrd st s t i~~t foe
Go progr-a7. parforaar.ce accorc~ t~g to rectives
,.~~crtec1 t.y the user ir. the scuoce.

~~~~~~ 2~~
-
~~~~~~°- 

a ~a rj a t v of ~arv ~ cas ~ -.ic!, O 9 5 1~~ t

;~s 5T4~lcE ~~~~
thc ast i s ~ in5 ~-c a ~o~~uc tc~ t~:- . - t ~~4t -

—~~~~ ~~E~~~~:~~ T A .A L YS1S , .~~ -i t,~~ttr ~c. t:e ~ C~~O~~~ OO ~~~ ~~~~~ ~ •~~ .J< ar~i

~~~~~~ ~~~~~~~~~~~~~~ 
.~

-•a cj~-d ’j it to;- cc: ~:c 1o.’€J . ~c - a t  ~~~~~~~ -
~~~ ~~~~~ 

a ct- •:o-, : t tr - 1c tc-~ t-~ ~~~~ u~-~~c - Rt ’•~t Is -:~ u c,a ae.t
p rogr ~ ac cc~c’~o::c~~~~- ..

t
~—.——— Pr.’pram exec-otion ovtdas normal compu~4t ionsi

os r t ~t i ~~ c ’ ut ; ’ uts f rom the ~nstr ’.scc-n—
•~.. ~~~ ‘~~1 •~ ~I ~~~~~ -p.. ..t ~~ rc -~‘.z

• :_
- j a t a ’ oOac—c e sc anatvs ~ a t’y ~~~~~ ~ser—u~~ .ec ted

1 progcaz parformance output ~ t rs•:erse~ wtth
oc-rmal p:.~c;-ao output.

TESTING i— .—— JAVS includes detailed post—test analysis
TEST EFFECTIVENESS facilities which provide measures of testing

MEASUREMENT thoroughness , both individually and cu ula—
tively for a set of test cases.

I
,--

- -.----..
~~C —~~ rESI

~~~~~~~~~~~~~~~ 
~~~~~~~~~ The rasult -. ace examined by the user to deter mine

it ro:~c goals have baco oar an.~ testing is
ccnr

~
eted.

-

YES

Figure 7.1. The Role of Post—Test Analysis in the Testing Process

7—2

- -— ~~~~~~~~~~~~~~~~~ - --~~~~~~ -- - -•

-~~~~~~~~~~~~~~~~~~ - — - -

~~~~~ I

If the testing goal is execution of all (or most) decision outways (DD—paths),
then the command

ANALYZER ,DDPATHS. (Fig. 7.6) -

should be specif ied in addi t ion to or in lieu of ANALYZER ,MODLST.

7.4 ANALYZER OUTPUT -

The reports produced dur ing pos t—tes t  analysis fo r the samp le command -

se t in Sec . 7.4 are shown in Fig. 7.2 through 7.6. Additional reports con-
tam ing module execution timing , DD—path tracing, and DD—paths executed for -

each test case are described in the Reference Manual.

In the report descriptions , the “specified module ” is determined by the 
-

user. The TEST macro command used in the sample command set contains the
module specification : ANALYZER ,ALL MODULES which refers to all modules on
the data base l ibrary.  The user can specif y a subset of modules by using
the macro command

TEST ,MODULE = <name—i> ,... , <n a me — n > .

or the standard command

ANALYZER ,MODULE = <name-i> , . . .  ,<name—n> .

7—3

I -~ - - -~ -- -~~~~~~~~~~~ -~~ 
-
~~~~~~~~~~~


OOv~ (9T 4 ?(V(HT ~ I$T 1:.e

OOUI.t ~tJ’C 0IM 4, .84491(0? .1.0500” ,. Vale’)? MODUI.C VIXP400M ~

HO. I V). $10 !! ~~(‘.? 00.06149 C0H?lOL

8 4 41 4 ’ . ~~~~~~~~~ (*~~~~0’ C0’VVTC I LaC0’IOI. I 00 ——
7 4 0)
3) 0 , $
4 I 0 8 *4 .rnvrol. j IHOLI 119? 040Sa6N 4*

!? (0 !11 4 4
4 I 0 8 T~~1~~ i~~1~~I 74 S 9

I SI I Y (4 1 7 (07 8 74 S S
0 I SI II~~4 8 1 1 4 10 — 4 S
9 I 0) 17 1 0 T?IM 2* H 6 $

is e si O v E O L ’ ’ (1(08 • ‘(~~IA I
18 4 0) (“ ,t ’k& ’ 1704 2 • 71074 9
Ii I V) 17(0 COO? H IV S
13 I II ~~~4 (4 (4 0(0 H 5 0 55 V 04) V ItOF) Ta.U $
is I 4) F7L(0 0 8 4 7 4 H 0 0 20 4404) VICOf) T6F14 $
IS •) u3w7? 04 70 • t f lo*a • ~?(0~* $ S
IS I I I 4(53.0 • ~‘SGI S I 1) I
ii I •P 0.I1~ IJ’ ‘07010 4(3364 S 1 7,0
ii I II 0$. a tie

~~~~~ ~~~~~~ coon $ —
II I 0) ~0 arA! ~(a ‘.0 44 (0 (1 1 1 2” 31 3 I?
78 I I )  I(~~I0 2
74 I I )  b Y T E  1 0 • 4 U 4 *0 I U SYTE 8$ • . 5 4) I C400 I S p
2? I I)  *7 ? ) 4 0 . 4 II I *110)4 I S $575 IS C . a $8 I (*50 8 1 p
23 I I l  W~ 7( 1 I , 4 Ii I 87(074 I • 557$ 8$ IC , 4 Si I C**O I 5 2
is I II ($40).) I 17(01 • (1(12 I $ 2 b Y
23 I i •. ~zoo~~
2* I I) 8’ 11(4) $0 100 5 I 5” 5) 2 IF
7? I 7)  GC T 3 t*’)Pt~ $ 0 • tHy
20 I II 00117 54 9 2 - •

20 I I I  (‘40 S
30 I 0 )  *1 IF 0U
38 I •~ 3100 ‘4 1
3? I 0)  *0 ($UP).) 04 -
3 3 4 0)

(I(CIJT8K).( $?AT (M(V? 3 14
$T61tN(N1$ LitCutto 12

~ t$ CL$? II (Cu Tf 0 $1.

This report , output for each specified module which is invoked during
Test Execution , contains the enhanced module listing with cumulative state-
ment coverage values appended. These values , to the right of the DD-path
numbe rs, reflect the number of times each executable statement was executed
during all of the test cases in the run. Executable statements not exercised
are fl agged wi th an asterisk.

Figure 7.2. Module Statement Listing

7—4

• - 



-- - —-S -S— • -~~~~~~ - — - -~~~~~
-S-

~~~~
-

~~~~~~~~~~
-- --- - -

~~~~~~

3Sv7~1t7 IT I01 ~~~pl?f 050*011 . 17 t050CI) 04/24/74

ILL SIECtO t t~~~~’’~~t V (~~~7UI~~I%(D 04 III I2~~ t T 0 . $ 0 4 / 2 9 / 7 0

• 5410, 9 3012•/70 $ 4 0 £ 4 7 .. I V C S r £ 8 7 J 0 0 1. 4 7 0 (I U ?1 £ 8 7
______ - _____________ — _______ - -

—
~o v 7 • T y ~~ -os.o t ; ~v — — - t- ~g .s tI o?~~ e : — ? 0 5 w0 774 ~t .T 1 ‘. J . 5 11 ~~~~~~~~ 9C , 1r —

~~~~~~~ P & T ~~t • 70! !.T
p 1 — C 

- — 
2..p,~ ,s 7 :~~o:oC :css T s I 4 C 4 s ~~2 0 0 0 0 $  130 : :? los:) :.~~:.:::.s lR.’L~~~~~

- - J1003 JOPlI  ‘ 3 4  t 3 : ‘ 3
, — ---------r 3 0 0 - 0

4 S~~IT 3 0 0 3  7 I 8 09 I 1 I $ 
_________ 

53

~ X 3? ~~~~~:i’~ : 
•-— -I I 3 • 0 0  2 --S-SS0 -

JS,10 :. 0 :  4 , 2 I 0 8 2 I 0 0 0

• S .• • S
S 0 S

IS,? :~~P:1 ‘ z 0 0 0 2 17 1 7 400
lull , —— :50:1 — — — — ‘  — r - 0— ——o  o - - i—  - 

~~
— — — — I ~~

- — —  -- ~~~~ 
— —

CO IY5 !  5821  7 1 0 0 0 I 7 7 7 5 0  5 53
- I - —

~~~~~~~~~~~~ 
— — -

~~~~ 
- - —

IL 7104. 1 0 006 41
— — . — - — —— - -  —

—2t1 —-1Pfc:rtt: ~o1rL s I 0 T — ~~’I C E t -lD”0’ ’0’

0?  6~~~l?$  1
- -  — 

~~~7~~~ 7 r

- - so ,:: - - — — —- —
~

$I4I 3411: ‘—
~~ i r:: 7 — X — -

i: ;’ :o r r : I I -

‘,:l :,;:c -— ——— ———— -3—-— -7 — — - -
—
~

-

io:~ x j o ; : : • I -
- ‘-1 ~~~~~

- I:~
— - S • - - — - 7 - -

011:11070: 731~?:(! 1 2

~

d

~

— -”
--

024 1 - 0 s p r : : r : o : ? I I 0 7 0

$v~~,!o 1?- :l-;~~~
- - ? — p - — ~~f — -I-— --

? D — P A ~~ I1 l~~4~~0 S 1 1:; !),: : 1

~ —71~70~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Th is report summarize s the testing coverage in terms of module invo-
cations and DO-paths traversed. For all specified modules invoked during
the test run , the number of invocations and DD-paths exercised for each
test case and for the accumulation of test cases is given. If there are
any modules specified but not invoke d in the test run , they are listed with
the number of DD-paths in each module. At the end of the summary report
are the cumulative DO-path coverage values.

Figure 7.3. Invocation and DD-path Execution Summary

7—5

- • - --- • - - - -

.8045 a~~0QSI 517 6 00.0*?- .c ‘40? (‘ € ~~J ’ I~~. r o q I s} 5 / 0 6/ 7 5 7.~~3 . 1 b

0C~ L (Ja~~S T ~~ST t 7 71 1 1 P1 ’ ’5 I) . 7 5 7 CF 0 (C IS IO ’ . . 70 .0 (C IS I 0 0 0a7 3 ‘.01 (O CC UIL O
‘4U ”I I !~~f ” l ’ ! C * ’ l C ’ 4 7 ‘4 ’ i •~7 T I

(‘~ ‘0O~ (0000 0 I S*•~~..(I 7U~~c C ’ / ~ */ ’ S I • I 2 3 4 5
I 1 4 ’ L(7 ?? ~ o 7 4 / ~~l~~75 7 3 I I 3 ,

S I ~ A — ~~_ 7 3 7779 Q 0 /) . / 7 5 7 3 1 1 3
I 54~~~1~~ 27 07 ~~5 /l ~~ / 7 S I * 1 1 2 ~ S
I lO C a L . - ‘ - .7? 1

($00).) (A0q 0~,.’ I S6 4 L0 5 720 0 0 5/ s o / i S I £ L L I
I S’ ’L(P ? O o 04 /04 , 7 5 1 1) I 2 5 ~ ~ o 10 11 82 84 17 89
I ~o#’tE 3 270q 0 0 / 0 4 , 7 5 7 II I 2 5 o 0 4 80 11 12 14 1? 19
1 SI” l.t 4 2209 00/04/7 !. I A I. L I
I 701*). ‘401 011 0 II I 2 5 * 0 9 10 11 12 14 17 II

For all specified modules invoked during the test run , this report
lists any DD-path which was not traversed in one or more test cases.

Figure 7.4. DD—Paths not Executed

)

7—6

-~~~~ ~~~~~~~~~~~~~~~~
-— _ _

_

_S ~
- -

~~~~~~~~~~~~~~ 
- —-

~~~~~~
—- - -— - ——- -

~~~~~~~~
- - —  - 

~~~~-


-~~~

TEST — CiSC 5IMS~~C i 104 0 0~ /09/79

I I) (3*4000 IC000000

TEST.CaSE S000) .C 7 1049 ~l/ó’/7(

I j) (5004 7 4(000060

3400(. (3 104, orII0~~,?’

r”i ~;:;~;
“

~;~~
;;; ;; •

~
- — —

TEST—SIT TIR HTN*T1I70

This report is a printout of the Test Execution trace data at the
module invocation and return level. Each line of output represents a
module invocation , a new test case (see Sec. 6.3) or the end of the test
run . The module and JAVSTEXT names are indented to show invocation.

Figure 7.5. Module Invocation Trace

7—7

- - - - -
~

- - - -- —

‘O:-~~ (rio.’AT , COvER *’i C .IS TI’.O

NODULE 4 I$” Ø L I 6. j O o S T (A ? $ (0PR0G~ 8. 040(07 400UL(.~~00W~~~M

00.
~~~~ S ? A T C ’ U l ?  0D~~~ A ’~~S G(’4(4a1(O C Ov(500E

I I 0 )  ~~~ ( 0 P ).1 I ).I$IT1 • LI HIT? I $
00.0110 1 IS 0 0CEDu ~~( (0101 2

• • 9 4 I I  X ° LI~~IT 1  03 100 5
.. 7Ø•P~~~~ 2 I S  i0~ .( 884004. 0 •
•. 0 0 . 0 0 7 9  3 15 F A L S (  5040 C 1 2

1? I I I  PØ D  I • I • , L I M IT )  S
83  I 75

• 50 5 7) • I • t • LI II’2 S
59 5 3)

2) I 3) iF(51 .4 J LO 3 S
SO D0—~ a? 4 IS T~~uE 46a .C4 2
•. DO.00’Y 5 15 EOLS( 801’4CH 0

23 4 3) 001~~~I I
•• OO~ 9*T~. 6 IS 707< 8440C0 5

75 I 3) ( ‘47

27 5 3 5 S.jTC~~ P5Co • I L I O C L I  • L 0 8 0 L l  • L06 (L1 • LAO EL2 4 S
25 I 3) 6770 R IC o  5 100z S • I 57 S

“ 01— P a T H  7 IS 5°~~C~ ~~~~~~~~~ 7 2
•• OC7.~ 1T, F IS So7~~C” 17~~ i . A V  2 0 •
•• C C — P l Y  9 IS  5 . I T C ,  7. .0 0  3 C
•. :7— P U ’ - .  o o IS  s o i? c .  c~_ ’ . A ,  C
•~ 33.~~ 4 T H  11 IS S’ITC .. O ’ .iY 5 0 •

3 0 3) L 0 5 0 L I .
1Ft!1 0(SULT ).5 4 4

•• OD~PL~ 12 IS T Q ~~( P U U~~~~.S 0
• •~ 77.7~~ T O 7 3  IS Fa~~S( 5~~A ’ C’. 2

37 4 3)  O’7’ $ES~J).1 (2 s S
• O 0— ~~* ’ 14 S T~~~~( 4 0 * - Z —  0 •

7C~~PA T .  7 5  ~ • U S SC P~~0~~C ’  2

34 I 3)  0 0 7 ’ I S
*~ ~~~ .P U V H  7 4  7 5  ? O ~~< 54*4 . 0 0  2

36 5 3)

34 I 3) (07
•~ D0~~ L~~ I~ :s LO~~ 1~. F lU £ 7 0 0 4  0

( D.0000 l~ 
IS C S C A P 7  F O O  ~ C- OP 2

0 1  I 7) (4.0
•• 7 7. P U ’ IS IS LOC- P :o. F : A  a , o ; . . I
•• ~~~•~~lT PT 5 ISCa ~ L FC U  L 7 P  2

T O T A L  0 •11 5 70
DOPaTo S ($(CJ’CD 9
*15CC’.? 14(0.81(0 45

For all specified modules invoked during the test - run , this report
shows the statements which begin each decision outway and the number of
times the DD-path was executed during all of the test cases.

Figure 7.6. DD—Path Coverage

7—8

-S 

~~~- - ~~~~~~~~~~~~~~~~
__

~ • ~~~~~~~~-~~~~~~~~~~~k --— -- - - - - - - --

_ —— - -S --~~-—

S RETEST ING ASSISTANCE

Software testing and retesting can be performed at either the single—
module or system level . At the single—module level , the retesting target is
a set of decision outways which have not been exercised . Retesting at the
system level involves identification of target modules and intermodule - -

dependencies. The JAVS reports for system—level testing and retesting were
obtained in the DOCLXENT process. Section 10 and the JAyS Methodology Repor t2
describe system—level retesting ; this section is devoted to single—module
retesting.

Given a partially exercised module , the retesting objective is to de—
vise additional test cases which will increase the testing coverage . Two
questions arise in addressing the task of single—module retesting : What are
the targets for retesting? And , once selected , what assistance is available
to exercise the targets?

8.1 RETESTING TARGETS

The DD—pa th selection criteria should attempt to maximize collateral
- -

testing ; i.e., exercising more than one unexercised decision outway with
each new test case. Several guidelines can be used to aid the selection ;

1. In a cluster of unexercised paths , choose an untested DD—
path that is on the highest possible control nesting level.
(JAy S statement and DD—path coverage reports print the
nes ting level number.) This selection assures a high degree
of colla teral tes ting, since some of the DD—paths leading
to and from the target must be executed .

2. A reaching set is a sequence of DD—paths which lead to a
specif ied decision outway . At user request , JAyS de termines
reaching sets to include or exclude iteration . Choose a
DD—path which is at the end of a long reaching set as the
target. In addition to collateral testing, it is likely
that the resulting test case input will resemble data
which corresponds to the functional nature of the program .

3. If a prior test case carries the program near one of the
untested DD—paths , it may be more economical to determine
how that test case can be modified to execute the unexercised
path. JAVS post-test analysis reports (see ANALYZER,HIT and
ANALYZER ,DDPTRACE in the Reference Manual) show which DD—paths
were executed during each separate test case.

4. If the analyses required for a particular DD—path selection
are difficult , then choose a path which lies along the lower
level portions of its reaching set. This can simp lif y the
analysis problem.

5. Analyze the untested DD—path predicate (conditional formula)
in the reaching set for “key” variable names which may lead

tl~~~ o t h ~

Jut

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~4



I

6. Choose DD—paths whose predicates evaluate functional boundaries
or extreme condition~ ; exercising these paths frequently uncovers

• program errors. •1

0 

Mos t of these guidelines depend upon the identification of DD—path -
~~

- - reaching sets. One of the tasks performed by the JAyS testing assistance
processor (ASSIST) is the determination of these sets.

8.2 REACHING SET TASKS

The user inputs the desired path number to be reached , and ASSIST
generates the reaching set of paths from the module entry or from a desig—
nated starting path to the specified path. For the generated set of paths ,
the key program statements are printed , including the necessary outcome of
any conditional statements which are essential. The user may specify
iterative or noniterative reaching sets to be generated .

8. 3 REACHING SET INPUT

The data base library containing syntax and structural analyses plus a
set of JAVS commands comprise the input to this process.

8.4 COMMANDS

JAVS standard commands must be used to identify the library , JAVSTEXT ,
modu le , DD—p ath target and , optionally, initial DD—path in the reaching set.
Multiple module selection and reaching set commands may be used .

OLD LIBRARY = <libname >.

9 START.

JAVSTEXT <text name> .

MODULE = <modname>.

ASSIST ,REACHING SET , <target> ,<initial> .

other REACHING SET commands for the
current module or other module selection
and REACHING SET commands

END.

The target and initial values are DD-path numbers. The initial value is
optional; absence of the initial value sets the beginning path to 1. The
user can request the iterative reaching set by using the command :

ASSIST,REACHING SET,-<target> ,<initial> ,ITERATIVE.

8.5 REACHING SET OUTPUT

Figure 8.1 shows the report generated by the command :

ASSIST,REACHIN G SET , 10.

8—2

-- -~~~- -- 
— 5-- ----S- - 



0 

~~~~~~~~~~ 
g

,SN.IV C R A T l V (ITACHIHO SEP

~~
D0~P4 TM 4? P500 00.5*70 4

5S~~AE ~(0NP).) .. .8*051(51 0(500090 .. *45(4? 0007JL (O(105090

II I ?) F 0 S J . 5 . I . 4 I N I T ? $
19 I 3) 5081*

fl I i)
•

IFEITO .8 4.03 4 •tS$fWlT*L ~~(0ICA TE. SCOTW ’llNG DO’•• DO— PiTH 4. 55 YSUE 551000
0? 8 4) 10001 • J S

p 5 1 3) COD

07 1 3)
•

SNIT CO PICo . I b OIL) • Li01L~ • L*SEI.I • 415(4.1 1
OS I 3) 5070 0105 1$ 10005 — I SI S

•~ DO—PitH 7 IS SW I ’ C M OUIS’H
•• b0— ’ IY U S IS 54It0. 0 0 0 0 4, 7
•• DO.~~LtH 4 II SW IT ~~H 0000*0 3
•~ DO—P alo II IS S.IV O 0,• .a. 4
•~ 00 P170 II IS 001100 O U T . L V 5

09 I 3) LOSE).?.
5010 01004.3 5

as I at I.OOEL&.
1,0170 5E$Ut.t iS 4 $.. bO—’I1~ 12 Ii ‘SUE 0~~I’40°•• D0.’I’H 13 15 ?A) .S (05*004.

35 I 4) - 0(35*6 • 0007 S
3? 1 3) ORIF SCOUt. ? CD 4 1

I” DO— PaTH 54 (S TAu t 5~ *’ .C.
•• DO—P alo IS IS ‘aLOE SSa000

33 I 4) 0(51*0 • 0593 4
34 I 3) 051P 5 1

50 00.øalN IS CS TRuE 55000”
33 I OP NESSAS • “004 5
34 I 3) (‘.0

OUTPUT PO IN TS 0(53*5 1
39 I 3) (90 .(S3EWi!& L PR(DI ITE• P00505 00~

— — •~ OD ø a t H 5 ? IS L O O P OW ‘OP b aTS

The source listing contains only the key statements of the DD-paths
that lead to the specified decision outway . The beginning and ending DD-
paths are noted. Any outway which must be taken in order to continue in

• the reaching set is flagged wi th ‘ essential predicate .”

Figure 8.1 Test Case Assistance REACHING SET

8.6 PROCEEDING FROM REACHING SETS

The process of relating paths which are targets for retesting to the
input for generating new test cases is highly dependent upon the design of
the test program. JAVS shows what code segments have not been exercised
by the data and the program paths that lead up to any selected DD—path
target. The tester must analyze the predicates in the testing targets for
important variables which may be described in program comments or docu—
mentation. These variables can be traced throughout the program by using
the JAV S cross reference report and the module interdependency and
invocation parameter reports (if the variables are passed as parameters).

When the new set of test cases is generated , it can be added to the
previously input data or executed alone by the instrumented modules. The
results of this Test Execution are then processed by the post—test analyzer
to see if the coverage is satisfactory. At this time , the user may see
problems in the software which require code changes. The JAVS documentation
reports can be used to determine the effects within a single module or within
the data base system of modules that the code modification will have. Re—
testing requirements for a changed module (or modules) Include those modules

8—3

~

- —- --~ —~- - ~ — ---

called by the changed module, and those tests which cause the changed module
to execute. DEPENDENCE output provides the module interdependencies; ANALYZER

-output identifies the test cases which cause the execution of the desired
modules.

8—4

L - - --
~~~~~~~~~~ —- .- -- - - . -

~~~~~~~~
--- -

~~~
- - -- -- •

~~~~
— - -

9 COMMAND SUMMARY

The subset of JAVS commands which will enable the first—time user to
process his source code are summarized in Table 9.1. The command stream s in
Table 9.2 show the natural order of processing and a typical selection of
commands. Instrumentation , activity 2 in Table 9 .2 , is shown as a separate
activity so that the user can obtain the statement numbers needed by the
PROBI commands. Instrumentation can be performed as part of the first

- - activity following the BUILD LIBRARY operation if the user wishes to manually
insert (through a text editor) the necessary invocations to the PROBI data

— collection routine .

The rules for JAVS macro command usage and the default option values
are described in Appendix B. For a complete description of all JAy S co ands
and sample output each command produces , see the Reference Manual.

9—1

IIIIIf•&_ --

rIPr .. ~~~~~~~~~~~~~~~~~~~~ ~~~ - -

~

—- - - -

~~~~~ 

—

TABLE 9.1

COMMAND SUHMARY

F ‘ tASK C000-SASJT) OPTIONS

(1) Perfo rm synt ax and BUILD LIBRARY 3 ibrary  name > .
structural •u3lyses
create data bass
libr ary

( 2) Generate report s for DOCUMENT •JAVSTEXT — <text  name> ,
doc umentat ion MODULE • name-l>

(name—n> .

(3) Insert tes t  case PROBI ,STARITEST • , ‘tes t case name> ,
initiati on <module name> . (t racing level> .

<t ext name’ ,
(state ment no. >

(4) Insert test  PROBI ,STOPTEST —

ter mination (module name> .
<text name’ ,
<statement no.).

(5) Instrumentation PROBE ,JAVSTEXT — tex t name> .
NODULE — nam e—i>
(name—n> .

(6) Pos t—tes t  analysis TEST .MODL’LE — name—l>
(name—n> .

( 7 )  Retest ing ASSIST REACHING SET , , in itial’ .ITERATIVE •
<t ar ge t’ PICTURE

TABLE 9.2

SAMPLE COMMAND SETS
ACTIVITY CC~NAND S

1 BUILD LIBRARY .
DOC UMENT

2 OLD LIB RARY — TEST.
START.
PROBI ,STARrITST - <module name’ ,

‘3AVSTEXT name > ,osta teaent no.’.

PRO B I ,STOPTCST • (module name’ ,
‘JAVSTFXT name , state ~,cnt no ’ .

PROSE .JAVSTEXT — ‘.JAVSTEX T name’ .

3 Perform Test  Execution

4 OLD LIBRARY — TEST.
START .
ANA I ? Z F R .MC ’F- :ST.
ANA l YZER , ~~~~~~~~
TEST

- 9—2



- ~~~- ~ - - -~~
-- -~~~

10 TE STIN G ~~THODOLOGY

How testing is to be accomplished is determined by answering very
specific questions:

• What is the software test object? (Sec. 10.1)

• • Wha t are the available resources (e.g., hardware , support sof t—
ware, personnel , test time period , test tools)? (Sec. 10.2)

• What are the test goals? (Sec. 10.3)

• Wha t procedure will effectivel y accomplish the goals? (Secs.
10.4 and 10.5)

There is no single general procedure which  app lies to all testing
situations. Each particular testing activity is distinct and should be
analyzed to determine a suitable testing procedure. This suggests that the
testing process itself consists of three distinct phases : (1) identifying
the elements of the test activity , (2) preparing a test plan and (3) carrying
out the planned tests. The remainder of this section addresses the problem
of practical application of the testing methodology .

10.1 SOFTWARE TEST OBJECT

The software to be tested is called the software test object.

10.1.1 Source Language

JAVS deals with the software test object in source language form. This
is the form most suitable for automated testing because it is the form used to
create and to modify the software. JAyS assumes that the source text is free
from errors of a syntactical nature (i.e., it compiles without  syn tax—related
errors).

10.1.2 Overall Size

JAVS supports testing of both small and large software objects. The
software may consist of a single module or it may be hund reds of modules in
size. The total source may range from a few statements to tens of thousands.
It may consist of one or more compilation units. The limitations of a
specific JAVS implementation are restricted by direct access memory size and
the size of au.xiliary files in the host computer system.

10.1.3 Organization

The software test object  may be a complete or an incomplete program ;
it may be organized into one or more subsystems , or may be a utility package.
If the program is incomplete , some additional software must be supplied for
Test Execution . The additional software may be either operational software
or test software which , when comb ined with the software test object , results
in a complete program. Although the additional software need not be pro-
cessed by JAVS in source form , the interfaces to the software test object
must be clearly and unambigously defined in order to prepare test data.
JOVIAL requires formal i n t e r f a c e  d e f i n i t i o n s  for both data access and module
invocation. The source text for these definitions is essential for JAVS—
supported testing .

10— 1

~

.—

~

- -- --

~

- -  -
~~~~~~~~~~ - ---- —-

~~
-“

r~~~~~ ~~~~~~~~~ - - -- -~~~ - — .— —.——- — - =- —•- —_--—. •
~

,— -—- --— - - — s
___ _ —

For a very large software system consisting of many hundreds of
modules , it is wise to partition the software into test objects of tractable
size. Normally , very large software systems are designed as subsystems
according to some functional criteria . If the subsystems themselves are

• each a collection of hierarchically structured , inter—related components
or modules, this same partitioning may also be suitable for testing purposes.

- - Miscellaneous collections of low—level utility modules which are invoked
throughout the remainder of the system can be grouped together as a separate
subsystem.

In partitioning the software test object, some consideration should
also be given to the resources required to test the partition. The instru-
mented software requires more main memory from code expansion of the sof t—
ware instrumentation probes and more computer time due to the overload of
executing the probes. A further consideration is the execution—time
behavior of the software test object. During test execution it is important
to designate important events (e.g., file activity , link loading , major
cycles) which separate the test execution into a sequence of individual tests.
This permits the tester to extract more detail from the test results. Candi-
date events include the start of an initialization or termination process ,
the start or conclusion of a new test case, the change in mode of behavior
(e.g., from normal mode to error mode), opening or closing of files , memory
link loading, and invocation of other software not being tested.

To properly partition large software test objects, the tester must
use documentation supplied with the software for guidance.* The supplied

• documentation, which may be manually prepared , may not correspond exactly to
the software test object , since more often than not this type of documenta-
tion does not reflect the current version of the software. JAVS documenta—
tion capabilities offer automated assistance in verifying the accuracy of
the supplied software documentation . For example, the intermodule dependence
reports give a consise picture of the interface of one set of modules to all
referenced modules. Trial partitions of the software may be defined by the
users, and verified with these reports from JAyS. If the software is too
large to be processed by JAVS as a single unit , initial partitioning must be
based on supplied documentation .

10.1.4 Suitability for Testing

There are additional software characteristics which affect the suita—
bility of the test object to JAVS—supported testing. These are a result of
assumptions made in the JAVS implementation itself. For example , the current
JAVS implementation assumes the software test object contains no recursion ,
has no concurrent paths during execution , and is not time—critical .

Some software design characteristics facilitate JAyS testing . Among
these are:

• Highly modular , structured code

*See Sec. 10.4 for partitioning criteria according to software structure.

10—2

• Di rect correspondence of implemented software to functional
specifications

• Localization of code controlling important events in software
behavior (e.g., new test case, file I/O , link loading)

• Identifiable module inputs and outputs

• Mnemonic symbol names

• Traceabi l i ty of symbols to input symbols

Existing software may fortuitousl y possess some, if no t all , of these
properties. JAWS testing is hampered if the sof tware test object lacks
these, or if it contains logically unreachable code , uses borrowed code, or
bypasses normal module invocation and return protocol for control transfer.

Software may also be deliberately de signed to take advantage of
specific JAWS capabilities such as use of imbedded assertion statements for
dynamic checking of expected behavior , automated documentation , or program
performance with test point identification .

10.2 TEST RESOURCES

The resources available for testing must be identified before an
approach to testing can be determined . These include the computer resources ,
data for executing the software , the members of the test team , JAVS capa-
bilities , and the time frame within which testing must be completed .

10.2.1 Computer Resources

All computer resources (both hardware and support software) used by
the software test object during normal execution should be identified . This
information is usually contained in software documentation or can be ex-
tracted from sample execution runs . For example , for programs which execute
under control of an operating system , the hardware and software requirements
may be gleaned from reports produced by the system loader and information
extracted from job control s ta tements . If the program is overl~ yed (i . e . ,
different parts of the program reside in main storage at different times),
then the memory layout of each overlay link is also needed . This mapping
of the test software onto the computer is referred to as the execution
environment of the program .

Test Execution replicates normal execution in the sense that the
program reads its own inputs and produces its own outputs. Additional
output is captured from the instrumented program dur ing Test Execution for
later analysis by JAWS . Test Execution differs from normal execution in the
following ways:

• Some or all of the program has been instrumented to capture
execution behavior on a test file.

• Test case boundaries are identified at particular test points
in the software.

10—3

-~
S — — -

~—~~
5— —

• The instrumented code , although log ical ly equivalent to the
uninstrumented code with probes added , contains references to
JAVS probe routines whtch are added to the load sequence.

• The probe test file is recorded .

The major effects from these software perturbations are the increased memory
requirements and execution time due to code instrumentation .

10.2.2 Data Requirements

For Test Execution , the software is exercised with test data in the
test environment. This data may be generated specifically for the JAyS—supported
test activity , or may be taken from previous execution of the software, or
both. Existing test data as well as results from tests unsupported by JAVS
can be invaluable to the test process, especially if the tests reflect
functional requirements of the software.

10.2.3 Test Team

Testing requires that the test team be capable of preparing data ,
making computer runs with the software , and analyzing output produced during
execution tests. In addition , JAVS—supported testing requires that the test
team use JAVS capabilities for analyzing the software, make suitable modifi—
cations for test execution , and analyze the combined test results from the
software and JAVS (i.e., normal output from the software together with JAVS
post—test analysis of coverage derived from software probes). It is important

• that the test team have more than superficial knowledge about the software
test object. In particular , the team must have specification—level knowledge
of functional behavior , at least limited knowledge of program structure and
detailed knowledge of operational requirements.

For effective use of JAyS, the test team must understand the purpose
of each of JAVS processing capabilities and select the capability applicable
at each stage during the particular test activity . JAVS can be used to
accelerate testing. For example, if the test team ’s knowledge about the
software structure is deficient due to lack of detailed documentation , then,
before actual testing, the JAWS documentation capability can generate the
detailed information about inter—module dependenc ies derived directly from
the software . The additional information needed about each module to attach
meaning to the invocation structure includes each module ’s purpose , its
inputs and outputs , and the inLerpretation associated with data processed by
the module.

10.3 TEST GOALS

The overall test.ing goals are to improve the quality of software
through testing and validation of test results. Detailed testing goals are
directly related to the type of testing to be done : single—module testing
or system—wide testing . The type of testing, in turn , may depend on the
stage of software development and previous test history of the software
test object. It is often the case that single—module testing is most
appropriate during the code development phase or whenever a module has been

10—4

—-------,—-- --~
- - - -

~ -
-
~
--.

~

changed or replaced during the maintenance phase. System—wide testing is
applicable whenever collections of modules are tested (e.g., in software
integration and maintenance phases).

10.3.1 Single—Module Testing

For single—module testing , the testing process for complete coverage
has a single objective : to construct a usefully small set of test cases
which , in aggregate , cause execution of each DD—path in the module at least
once. Real programs may have DD—paths which cannot be exercised , no matter
what input values are used . An alternate goal is to exercise each DD—path
that can be exercised at least once , and for each DD—path that cannot be
exercised to provide a detailed explanation why it cannot. Programs which
have been tested to this level will meet the following criteria :

• Each statement in the program will have been executed at
least once.

• Each decision in the program will have been brought to each
of its possible outcomes at least once , although not necessarily
in every possible combination .

More stringent test goals include exercising each pair of DD—paths that can
be exercised in a single test, exercising all possible levels of iteration ,
and exercising all possible program flows (the last is, in general , not
possible).

10.3.2 System—Wide Testing

For system—wide testing, the testing goal is a straightforward exten-
sion of the single—module testing goal: to construct a usefully small set
of test cases which exercise as many DD—paths as possible , out of the
aggregate set of DD—paths in all modules in the system . The coverage
measure may be an overall percentage of DD—paths exercised , the percentage
of DD—paths exercised in the least tested module , or the percentage of
DD—paths exercised for the least tested subsystem of modules.

A more stringent test goal would measure coverage in relation to
module location on the invocation hierarchy . For example , any modules
which are referenced by more than one other module might have its coverage
separately determined for each referenc ing module .

10.4 TESTING STRATEGY

In previo~’s subsections the discussions have focused on defining the
software test object and collecting information about its structure ,
operation , and the effects of using JAVS in testing . This subsection pre-
sents a general methodology for testing a software system and gives guide-
lines for effective .JAVS usage . The sequence of major steps for testing
with JAVS are:

1. Understand software system functional requirements

2. Generalize modes of system behavior

3. Define system hierarchical structure

10—5

L 4

- - - - --5 --
~~~~~~~-~~~~~~~ - -~~~~~~~~~~~~~~~ - -~~~~~~ -

I
4. Develop test plans keyed to modes of behavior and software

structure

5. Execute -functional tests

6. Develop structure based tests for increased coverage

10.4.1 System Behavior

lnformation about software (i.e., expected system response to inputs)
functional requirements is usually contained in the system specification
documez~~s and software program documentation . For complex programs there
may be more than a single mode of system behavior. For example, a data base
management system may have a primary , high—priority mode which handles user
commands interactively , and a secondary , background mode which generates
periodic reports on system usage. Other modes of system behavior may include
error processing or operation under degraded conditions (e.g., with an in-
complete or garbled data base). If there is more than one mode of expected
behavior, each should be identified and named .

10.4.2 System Structure

Having defined the system modes , an attempt should be made to relate
each mode to a hierarchical structure of the program . There are several
kinds of structure in a computer program: data structure is the organization
of the data on which the program operates , computation structure describes
the program ’s operations on the data , and control structure is the means of

• organizing the computations in the software. The control structure is the
kind directly dealt with by the testing methodology . The other kinds of
structure are tested only insofar as they interac t with the control structure .

Large software systems are usually organized into a series of sub-
systems , subsystems into components , and components into modules. This
state organization describes the way the individual elements of the system
depend on one another withou t regard to the way program control flows up and
down. The dynamic orZanization of a software system is the structure which
results from considering the effects of all invocations between modules ,
components, and subsystems. It is usually called the invocation hierarchy
of the software system. The testing methodology deals with the dynamic
organization . Normally, program documentation will identify the static
organization of software modules . The dynamic organization can be derived
from more detailed documentation and verified with JAWS documentation
capabilities showing intermodule dependencies.

For each named mode of behavior a software description should be
developed which identifies the modules invoked , the specified input domain
of each module , and the expected system performance. Existing software
documentation may not contain sufficient information to document each
behavior mode separately. It may be necessary to execute a limited number of
functional tests with the software instrumented at the module—invocation
level to determine which modules are invoked and under what conditions.

10—6

_

~ 

~~~~~ —— - —- —- -— 
-

-——
~~~~~~~~~~~~ -



-- -
~ -~~~~~~~ -~ -- n= --—----——-.r-~- —--  -~ ~ 5 - ~~~~~~~~~~~ 

- - - -
~~~~~~~~~~~~~~~~~~~~~~

- - - -~~~~~-~

10.4.3 Test Plans

To minimize testing effort , test plans should be developed which are
keyed to the named modes of behavior and to software structure. Each test

-

plan should identify one or more functional tests for initial testing , as
well as the software structures to be tested . It is often the case that more
than one substructure of the software system will be exercised with a giv~n
test case. Such ‘ collateral” testing can greatly reduce the overall testing
effort. Each test plan should contain the following information for each
functional test:

• A name identifying the test

• What function is tested

• The primary code structure tested

• Collateral code structures tested

• A description of the resources required

• The expected performance

• Criteria for evaluating the test

All these items are commonly called for in test plans for software acceptance
tests. Whenever appropriate , use should be made of existing functional tests
and test plans. The major distinction between testing with and without JAWS
is that with JAyS there is an orderly progression of testing from the initial
tests through well—defined steps to achieve the desired testing coverage , in

• addition to satisfying the test criteria. Quite often , additional tests to
achieve increased coverage are derived from the initial functional tests.

10.4.4 Executing the Functional Tests

Before processing with JAWS , each of the initial functional tests
should be used to exercise the software and to evaluate the output against the
test criteria . This is important for two reasons :

• It provides a baseline set of output from the uninstrumented
software for purposes of later comparison with output from
the instrumented software

• It demonstrates the ability of the test team to prepare test
data , execute the program , and interpret results.

This step requires tha t the program be complete , the source code be compiled
error—free , and that test output shows acceptable execution (though not
necessarily expected program behavior).

The next step is to execute each of the functional tests with instru-
mented software and determine initial coverage. This requires the JAVS
processing to build the library (BASIC and STRUCTURAL), instrument appro—
priate portions of the software (INSTRUNENT), compile and execute the
instrumented software with the JAVS probe routines (Test Execution), and
obtain coverage reports (ANALYZER). It is very important that normal pro-
gram output from Test Execution be checked against the baseline output. If

10—7

-

- — - ‘—---- - —5--.—-- - —~~~ ,-- ~~~~~~~~~~~~~ - - , - - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.

discrepancies exist between the two, this is direct evidence that the addition
of instrumentation has, in some way, exposed a software malfunction . Some of
the reasons for this type of error are:

• The software test object is sensitive to time or space pertur—
bations (i.e., it is not suitable for JAVS testing).

• The addition of probe routines was not properly accomplished
(e.g., they were placed in the wrong overlay link).

• The test data or test environment is different from that of
the baseline test.

• The computation process has caused the malfunction (e.g., using
the wrong COMPOOL to compile; inconsistent code generated by
the compiler).

• Computer resources are inadequate to process instrumented code.

JAVS capability for evaluating test effectiveness (ANALYZER) provides
a detailed and comprehensive analysis of testing coverage. Reports on
execution tracing , module and path coverage, timing, and modules and paths
not exercised are generated . For the initial functional tests this inf or—

- - mation should be evaluated in some detail since it represents the point of
departure for subsequent testing. Since JAWS only assists the test team in
preparing the software for Test Execution , the initial coverage results may
not accurately reflect actual coverage . For example , in JAWS the tester
selects the placement of a “beginning of test” signal and an “end of test”
signal to the probe routines and they in turn record coverage only during the

• user—selected interval of execution. Thus coverage reports are limited to
code executed within this interval. Some reasons for unexpected coverage
results are:

• The functional test does not exercise the expected modules
at all.

• The selection of test point placement is improper.

• The selection of modules to instrument is not compatible
with the functional test , perhaps indicating erroneous
definition of system substructure.

If anomalous results occur at this point it is important to review decisions
made during the previous steps in the testing process before proceeding.

10.4.5 Structure—Based TestinE

Once the test team is confident of the quality achieved in obtaining
initial functional test results , testing proceeds with JAVS assistance as
follows :

• Selecting a testing target from information in JAVS coverage
reports for previous tests

• Constructing new tests to mirror coverage using JAVS retesting
assistance

10-8

_ ~~~~~~~~~~~~ • ---

— -_ — S•-.—-.,—-—--
~~~~~~~~~~~~~~~~~~~ 

—---- j— ~~~~~~~~~~ 
-. - _-5__-._ — -- - —..—-— --.-———_ _ - _ - ---- _--- —_ --5—-— —5 5

• Performing Test Execution with new tests capturing softwa re
behavior data

• Analyzing test results from JAyS coverage reports

These steps are repeated until the test coverage objectives have been met.

Software testing can be performed at the sing le—module or system level.
At the single—module level , the retesting target is a set of DD—paths which
have not been exercised.

Retesting at the system level involves identification of target modules
wi th low coverage and analysis of intermodule dependencies. Single—module
testing may be viewed as part of system—wide testing. In order to construct
new test cases , information about the control structure of the module and
its input domain is used . The relationship of the mod ule ’s input domain to
the system input data must be determined in order to test the module in its
normal environment (i.e., its position in the invocation structure of the
software system). This may prove difficult , or not at all possible , since
communication paths to the module may be blocked (e.g., by pro tective code
or lack of knowled ge of the test object). If this is the case a special
tes t env ironmen t may be needed to thoroughly exercise the module.

10.4.6 Testing Assessment

At the conclusion of the testing an assessment should be made of the
results. This summary should include the following:

• Documentation of the methods and extent of testing: strategy
for testing, coverage achieved , test cases used , dynamic behavior
modes tested , and identification of logically unreachable code

• Detern’ination of the consistency between the software functional
specifications : what specific functions are implemented , what
unspecified functions are implemented , what unspecified restric-
tions are embedded

• Evaluation of existing software documentation : errors ,
inconsistencies , missing information , superfluous information A

10.5 GENERAL STRATEGY

The best approach for systematicall y testing a large software system
will depend on the specifics of that system ’s elemen ts; it is not possible
to state a universally app licable strategy . Mixtures of the top—down and
bottom—up approaches may well cost the least , and may result in the greatest
testing coverage .

The results of a test activity depend to a large extent on the
capabili ty and ingenuity of the test team. JAVS does offer tools not
previously available to make testing more effective . App licat ion of those
tools to particular situations is the responsibility of the testers. There

- ~~~~~~~~~~~~~~~~~~~~ S—-*~~
_ —~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

_ _ _ _ _ _ _
_ _ _ --5- - - - -.

- -

I

are however , some guidelines for selecting the most appropriate JAWS
capabilities for particular situations , and some of these are described
below . -

-

• Incomplete documentation. Use JAV S resources to build the library
(BASIC and STRUCTURAL) and obtain documentation reports on the

- • software (DOCUMENT). Construct missing documentation needed to
sta rt tes t ing.

Incomplete software. Use JAVS resources to build the library (BASIC
and STRUCTURAL) and obtain documentation reports on the software
(DOCUMENT). To complete test environment , first identify top—level
modules and external library dependencies. Next , construct a driver
for each top—leve l module: Use JAWS module invocation definition
and cross reference for calling protocol and input domain . Provide
stubs (i.e., dummy modules) for externals which are referenced
but are not present on system or auxiliary libraries: Use JAVS
module invocation references for calling protocol. Documentation
supplied with the software should be consulted for module interface
specifications . —

Single—module testing . Use unexercised DD—paths report (ANALYZER ,
NOTHIT)* to iden tif y po tential test target paths . To get the control
nesting level of unexercised DD—paths , use the module listing
(PRINT ,MODULE)* or DD—path def initions report (PRINT,DDPATHS).*
Use control flow picture (ASSIST ,PICTURE)* for an overview of
module structure. Select testing target from reaching set for target
path (ASSIST ,REACHING SET)* and de termine module inputs which cause
target path to execute. Generate test data (see below).

System—wide testing . Use module coverage summary and DD—path coverage
summary to identify potential test target modules. For any module
never invoked use inter—module dependencies (DOCLTh~ENT) to de termine
what modules cause it to be invoked directly and indirectly through
other modules . Identif y which higher level modules were executed.
Using cross reference reports together with inter—module dependence
reports to identify what modules affect invocation , modify test data
to cause invocation of target module. Several cycles of top—down
testing may be required if the unexercised inter—module control
structure is at all comp lex. App ly single—module testing techniques
to increase intra—module coverage .

Unknown behavior. Plant document probes (PROBD) to capture imbedded
descriptive information in test execution trace. Examine test trace
report to identif y behavior with probe location . Use results to select
appropriate test points.

Unexpected behavior. Use JAWS assertion statements to isolate causes.
At the beginning of the module , insert assertion statements for
expected condition of module inputs. At the end of module , where
control is returned , insert assertion Statements for expected

*See Sec. 5, JAWS Reference Manual , under the command headings .

10—10

Ih&ihd lII. ~~
—

~
—-.-.----—--

-

I

cond itions of module outputs. At intermediate locations in the module ,
insert assertion statements for expected conditions of module behavior.
Examine Test Execution output for report of unexpected behavior.

There •tre ~tveral side benefits to be realized from testing. For
example , the ottware can be optimized by removal of unreachable code or code

r which implements extraneous functions. JAVS documentation reports are useful
here in determining the extent of changes to the software (e.g., modules and
data structures affected) and the amount of retesting necessary after
software mrd ificatio ri s have been made.

10—li

-— —
~~~~~

- - -
~~~~~~~~~~~~~~~~~

- - —-


~~~ppprT ~~~ 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 5 - - - _

~~~ -

- 

—5 — - 5 - —5- 5-—

- 

APPENDIX A
- JAWS CONNAND SUMMARY . 

-

A-i 

—-5—- - -— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - - —  ~~-- - 



JAVS COMMANDS (DEFAULTS UNDERLINED) STEP

ALTER LIBRARY <libname > . (Universal)

ANALYZER. AN ALYZER

ANALYZER ,ALL. ANALYZER

AN ALYZER ,ALL MODULES. ANALYZER

AN ALYZER ,CASES = <number> . ANALYZER

ANALYZER ,DDPATHS. ANALYZER

ANALYZER , DDPTRACE. ANALY ZER

ANALYZER ,FACTOR = <percent—increase> . ANALYZER

ANALYZER ,HIT. ANALYZER

ANALYZER ,MODLST. ANALYZER

ANALYZER ,MODTRACE. ANALYZER

ANALYZER ,MODULE = <naine—l> ,<name—2> ,. .. ,<name—n > . ANALYZER

AN ALYZER ,NOTHIT. ANALYZER

ANALYZER , S L’MMARY. ANALYZER

ANALYZER ,TIME. ANALYZER

ASSIST ,CROSSREF ,JAVSTEXT = <text—name—i> ,<text—narne—2> ,...,
<text-name-n> . ASSIST

ASSIST ,CROSSREF,LIBRARY . ASSIST

* 
ASSIST ,PICTURE. ASSIST

ASSIST ,PICTURE{ ,CONTROL) { ,NOSWITCH}. ASSIST

ASSIST,REACHING SET ,<number—to> ( ,<nuniber—frotn>}
{ ,PICTURE { ,ITER.ATIVE}}. ASSIST

ASSIST ,STATENENTS. ASSIST

BASIC. BASIC

BASIC,CARD IMAGES = ON/OFF. BASIC

BASIC,C0M~~NTS = ON/OFF. BASIC

BASIC ,DEFINES = ON/OFF . BA SIC
BASIC ,ERRORS = ON/OFF/LIMIT/TRACE. BASIC

BASIC ,SYMBOLS = ON/OFF/PARTIAL. BASIC

BASIC,TEXT = COMPUTE/BOTH/PRESET/JAVSTEXT . BASIC

*BUILD LIBRARY {= <library name>), BASIC ,
STRUCTURAL

CREATE LIBRARY = <libname> . (Universa l )

*Can be used only with the overlay version.

A- 2

— -  ~~~~~~~~~~~~~~~~~~~~~~ -- ~~~i:-. _ -~~ - —_ _-.-~~~~~~~~~~~~~~~~~ -——~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— _ _ _ _



JAW S CO~~1ANDS (DEFAULTS UNDERLINED)

DEPEND EN CE ,BANDS . DEPENDENCE 
-

DEPE N DENCE ,BANDS = <number> . DEPENDENCE

- 

- DEPENDENCE ,GROUP ,AUXLIB . DEPENDENCE

DEP EN DE N CE ,GROUP ,LIB RARY . DEPENDENCE
DEPENDENCE ,GROUP ,MODULES = <name—l> ,<name— 2’,...,<name—n~~. DEPENDENCE

DEPE N DE N CE ,PR INT ,INVOKES. DEPENDENCE —

P~PE N DEN CE ,SUMMARY . DEPENDENCE

DEPENDENCE ,TREE. DEPENDENCE

DESCRIBE = ON/OFF. (Universal)

*DOCL~~ NT{ ,JAVSTEXT=<text—name>{,MODULE=< name—l> ,.. .  }} .  ASSIST ,
DEPENDENCE ,
(Un iversal)

f END. (Universal)

END FOR. (Universal)

FOR JAVSTEXT . (Universal)

FOR LI~ RAR~f .  
.- (U n iversa l)

FOR MODULE = <name—l> ,<name—2> ,. . .,<name—n> . (Universal)

INSTRU MENT . INST RU MENT

IN STRU~~ NT ,MODE = INVOCATION/DDPAT }iS/DIRECTIVES/FULL . INSTRUMENT

INSTR UME NT ,PROBE ,DDPATH = <probe—name> . INSTRUMENT

INSTR UMENT ,PROBE ,MODULE = <invocation—name> . INSTRUMENT

INSTR UXENT ,PROBE ,TEST = <test—name> . INSTRUMENT

IN STRUNEN T , STARTTEST = <modname> ,<textname > ,<s tmt. no. > INSTRUMENT
( ,-(TESNAM> -( ,<TFLAG>}.

INSTRL’MENT,STOPTEST = <modname> ,< textname> , INSTRUMENT
<stnt. no.> .

JAVSTEXT = <text—name ’. (Universal)

MERGE . (Universa l )  - :

MUDLLE = <name> . (Universal)

OLD LIBRARY = -zlibname> . (Universal) —

*Can be used onl y with the overlay versic’u .

A- 3

~ 

~~~~--


----5- — ——— - - -

JAVS COMMANDS (DEFAULTS UNDERLINED) STEP

PR INT ,DDP. (Universal)

PRINT,DDPATHS. (Universal)

PRINT,DMT. (Universal)

PRINT,JAVSTEXT = <tex t —name— l> , INSTRUMENTED = ALL. (Universal)

PR INT ,JAVSTEXT = <text—name >,INSTRUMENTED = <name—i> , (Un iversal)
<name_2>,.. . ,-<name~n>.

PRINT,JAVSTEXT = <text—name > . (Universal)

PRINT ,MODULE. (Universal)

PRINT,SB. (Universal)

PRINT,SDB. (Universal)

PRINT,SLT. (Universal)

PRINT,STB. (Universal)

*PROBE {,JAVSTEXT <text—name>{,MODULE = <name—i> , . . . } } . INSTRUMENT ,
(Universal)

*PROBI ,STARTTEST <modname >,<tex tname> ,<stmt . no.> INSTRUMENT ,
{,TESNAN}{,TFLAG}. (Universal)

*PROBI,STOPTEST = <modname >,<textname> ,-c stmt. no.>~ IN STRUMENT ,
(Universal)

PUNCH ,JAVSTEXT = <text—name> . (Universal)

PUN CH ,JAVSTEXT = <text—name> ,LNSTRUMENTED ALL. (Universal)

*
PUNCH ,JAVSTEXT = <text—name> ,INSTRUMENTED = <name—i> , (Universal)
<name—2> ,. . . ,<name—n> .

PUNCH ,MODULE. (Universal)

START. (Startup)

STRUCTURAL. STRUCTURAL

STRUCTLTRAL,PR INT SUMMARY /DEBUG. STRUCTURAL

*TEST~ ,MOD1JT.~E = <name—l> ,<name—2> ,...<iiame_n>}. ANALYZER ,
(Universal)

*Can be used only with the overlay version.

A-4

APPENDIX B

JAW S MACRO CO.~-1ANDS

-i

B—i

--

B.l INTRODUCTION

To facilitate the use of JAyS, four new commands were added to the
existing set of processing commands. These “macro” commands combine the
most commonly used commands from the standard set and must be used with the
linked version of JAyS. The macro commands may be used one at a time , all
together , or in combination with the standard set of commands. The combina—
tion of commands requires understanding the expansion of commands which each
macro generates; thus, the user is urged to review Sec . B.2 carefully. The
four macro commands are:

1. BUILD LIBRARY [=<name>).

2. PROBE [,JAVSTEXT = <text—name> [,MODULE = <name—l> , <name-2> ,
...<name—n>J].

3. TEST[,MODULE = <name—i> , <name—2> , . . ., <name—n>].

4. DOCUMENT [,JAVSTEXT = <text—nazne> [,MODULE = <name-I> , <name—2> ,
<name—n>]].

Brackets [] indicate optional information. Each option generates a
different set of standard commands.

B.2 EXPANSION OF MACRO COMMANDS

Unless the user supplies the library identification and start commands ,
the first occurrence of a macro command in the command set generates the
standard commands:

CREATE LIBRARY = TEST.

START.
or

OLD LIBRARY = TEST.
START .

All macros except BUILD LIBRARY generate the OLD LIBRARY command.

B.2.l Syntax and Structural Analysis

BUILD LIBRARY. generates commands:

CREATE LIBRARY = TEST.

START.
BASIC , COMMENTS = OFF.
BASIC.
FOR LIBRARY.
STRUCTURAL .
END FOR.

B— 2

—---5-5- -- - - - -

- -

1~
-

BUILD LIBRARY = <name>, generates commands:

CREATE LIBRARY = ~name >.
START . . -

BASIC ,COMMENTS = OFF .
BASIC.
FOR LIBRARY .
STRUCTURAL .
END FOR.

B .2.2 Documentation Reports

DOCUMENT. generates commands:

ASSIST , CROSSREF , LIBRARY .
DEPENDENCE , GROUP , LIBRARY .
DEPENDENCE , GROUP , AUXLIB.
DEPENDENCE , SUMMARY .
FOR LIBRARY.
PRINT , MODULE .
DEPENDENCE , BANDS=5
DEPENDENCE , PRINT , INVOKES .
END FOR.

DOCUMENT, JAVSTEXT = <text name>. generates commands

ASSIST , CROSSREF , LIBRARY .
DEPENDENCE , GROUP , LIBRARY .
DEPENDENCE , GROUP , AUXLIB.
DEPENDENCE , SUMMARY .
JAVSTEXT = < text name > .
FOR JAVSTEXT .
PRINT , MODULE .
DEPENDENCE , BAND S = 5.
DEPENDENCE ,PRINT , INVOKES.
END FOR .

DOCUMENT , JAV STEXT = <text—name >, MODULE = < n a m e —l> , . . . ,

<name—n>. generates commands:

ASSIST , CROSSRE F , LIBRARY .
DEPENDENCE , GROUP , LIBRARY .
DEPENDENCE , GROUP , AUXLIB.
DEPENDENCE , SUMMARY .
JAVSTEXT = <text name> .
FOR MODULE = <name—l> , <name—2> , . . ., <name—n> .
PRINT , MODULE .
DEPENDENCE , BANDS = 5.
DEPENDENCE , PRINT , INVOKES.
END FOR.

B— 3

- -

—
_ __ _-5--..,,-~

55_~ 5•~~~~~~ 5~~~~~~~

B.2.3 Instrumentation

PROBE, generates commands:

• JAVSTEXT = *NOJAVS*.
FOR JAVSTEXT.
INSTRUMENT .

• END FOR.
PUNCH ,JAVSTEXT = *NOJAVS* , INSTRUMENTED = ALL .

PROBE, JAVSTEXT = <text name>, generates commands:

JAVSTEXT = <text name> .
FOR JAVSTEXT.
INSTRUMENT.
END FOR.
PUNCH , JAVSTEXT = <text name’, INSTRUMENTED = ALL.

PROBE, JAVSTEXT = <text name>, MODULE = <name—i >, <name—2 >, . , . ,

<name—n>. generates commands:

JAVSTEXT = <text name> .
FOR MODULE = <name—l> , . .. , <name—n> .
INSTRUMENT .
END FOR.
PUNCH , JAVSTEXT = <text name> , INSTRUMENTED = <name-l> ,

., <name—n> .

B.2.4 Test Boundary Insertion (quasi—macro commands)

In order to identify test cases and control the recording of data on
the AUDIT file , the user must supply invocations to the data collection
routine, PROBI. The invocations can be manually inserted prior to Test
Execution , or they can be automatically inserted during instrumentation.

The PROBI commands cause JAVS to insert an invocation to PROBI for
identifying a new test case or terminating the test. The commands are of
the form:

PROBI ,STARTTEST — <rn—name> , <t—name> , <no . >{,<TESNAM >,<TFLAG>}.
PROBI ,STOPTEST = <rn—name>, -ct—name>, <no.>.

where

rn—name = module name
t—name = Javstext name

no. = statement number
TESNAM = test case identifier DEFAULT = 8H(CASE)

TFLAG = tracing level DEFAULT = 2

8—4

- —5—~~~~~~ - - ~~~~~- 5 .-——--5 --— 5 - - -—

Fr.— - - - ~•~•-5~~ 5- ~~ —--—- . -— -

The command options must be given in the order shown above . The user
must specify the module and JAVSTEXT names in which the PROBI invocation is
to be inserted . The user must also specify the statement number (using the
statement number presented in the JAVS module listing) before which the in— -

vocation is to be inserted. The user may specify the statement number to be
0. This results in placing the PROBI,STARTTEST call immediately prior to the

- - first software probe (at the first executable statement) and the PROBI ,STOPTEST
call immediately preceeding each exit from the module.

TESNAN and TFLAG are the two input parameters to PROBI. If these para—
meters are not specified in this command , the defaul t values will be used ,
causing tracing of module invocations and returns. TESNAN may be up to eight
characters; TFLAG may be 1, 2, or 3. A maximum of ten PROBI,STARTTEST com-
mand s can be used for a single PROBE command. The module and JAVSTEXT names
may be different in each command .

The PROBI commands , if used , must precede the PROBE macro command(s).
Any module specified in a PROBI command must be specified in the PROBE macro
command .

B.2.5 Post—Test Analysis

TEST. generates commands:

ANALYZER , ALL MODULES.
ANALYZER , SUMMARY .
ANALYZER , NOTHIT.
ANALYZER , MODTRACE.
ANALYZER.

TEST, MODULE = <name—i>, <name—2>, . . . , <name~ n>. generates commands:

ANALYZER , MODULE = <name-i> , . . ., <name—n> .
ANALYZER , SUMMARY .
ANALYZER , NOT HIT.
ANALYZER , MODTRACE .
ANALYZER.

Note:

After the last command is read by the macro command processor , an “END .”
standard command is generated .

8—5

- -5 - ~~ - - — —
~~~~~~

-

- - ; APPENDIX C

JAVS FILES

C-i

- - - — - - - --- ~~~~~~~~~~~~ —- -~~~~~~~~~5- --- — —- -——-—--—--~~~~~~ — — - -



-.5 — -5- v— - -
~~~~~~ -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~

C.l INTRODUCTION

• The files used in JAVS processing are listed in Table C.l together
: with important characteristics about each file. On systems which allocate

files by number (e.g., GCOS) the file number is used ; on those which allocate
the file by name (e.g., GOLETA), the file name is used. The data structure
column indicates the contents of the file. The node indicates how JAVS
references the file. The storage form and record format describe how the
data is recorded. The recommended allocation suggests an appropriate type
of system f ile , keeping in mind that random files must be on direct access
devices and sequential files may be on either direct access devices or serial
devices. The usage indicates how each file is utilized for different types
of JAVS processing .

The JAVS Reference Manual1 contains a detailed description of f i l e usage
for each processing step.

C.2 RANDOM FILES

LIBOLD and LIBNEW are used for the JAVS data base library . LIBWSP
is always used for working space. On all of these random files , the JAVS
Storage Manager allocates space for each JAVS table in contiguous groups
of 500 words called “fragments.” Each file is treated internally as a word—
addressable file , although it may be recorded in another form (e.g., as
fixed—length records). The wrapup suxrunary at the end of each JAVS execution
contains the current size for each of these files.

* C.3 SEQUENTIAL FILES

COMN.A.N and COMAUX are used for JAVS commands. COMMAN has a card image
record for each command line; COMAUX (always shorter than COMNAN) is used to
store the commands within an iteration sequence. COMNAN must always be al-
located for any processing step . COMAUX must be allocated whenever any FOR
command is used .

LOUT contains all JAVS reports destined for the line printer. The
number of records on LOUT depends on the number and types of reports produced.
The example reports in the JAVS Reference Manual are useful in estimating
the size of LOUT. LOUT is always needed in any processing step.

LPUNCH contains instrumented (or non—instrumented) source (in card image
form) destined for the JOVIAL compiler. The card image source can be written
at any time as long as it was saved on the database library . Usually, LPUNCH
is written during the instrumentation activity.

AUDIT contains the Test Execution probe data. It is possible to record
three types of records on AUDIT. The types of records actually recorded can
be controlled during INSTRUMENT processing by the MODE option and during
Test Execution by an argument value to PROBI. Clearly, for a fully instru-
mented program with complete tracing and a large number of DD—path executions ,
the number of records on AUDIT can become very large (to say nothing about
the added processing time). AUDIT is used in Test Execution and ANALYZER.
In general there is no way to estimate the size of the AUDIT file , since it

C- 2

—-
~

- ----5-— - -~~~~~~ --~~:~ —- - 5-- - -- .5—- — -5---- - — —-5— —-5 -— -—-~ 5-5--- --5- - -~~~~~~~~

---5--- -

-i • - “- -~~~~~~ .--
- --~~~~

N
~? ~ Ni

—— — -I~ ,i ~ 3N . :2 5- 5-

- ----- c . Z
-
l

i
~~ N ~ - -

~~~N 
5-
’- 5- 3 

—

3 3 3  3- N  - 5 - - - s  3 —5 3 5  5-

- 
- j _

N 
=

~~~

5 - 3 :1 —

N N
“ 5 -

1
5- 3 5

= -

— — - z
-

~) :;~~~~~.
- :5:2 :2 :2 -•< 3 ~~~~~~: - ~~~~: - - ——

5 - . —
- - _ : -z

:2E z
5 - 5 - ~~~~ 5-- ’ - - - -

~~~~~~
‘ :

Co 
_: -~

-

Co ‘ ‘:  
= -

~~~~~~~- -
.—~ -

- 1
— :: - 5- ::

—
—

—
— : :

— -
- - — — - 5- - - :

5 - 5 - 5 - ’ ‘

~~~~~~~~~~~~~ ~~~~~~~~~

I
=

C- 3

- —  -- - -~~~~~~~~~ - - -~~~~~~~—



- - -  - ——.5---- - — - - -

I depends on the execution behavior of the program being analyzed .

V READER contains the JOVIAL source (in card image form) to be analyzed . -
• by JAyS. READER is used by the Syntax Analyzer (BASIC).

CONMA C is an intermediate command file used by the macro command pro—
cessor. COMMAC is required in all processing steps whenever the JAyS overlay

- 
version is used .

I

C-4

L _ _ _ _  _ _ _ _ _ _  _____________________________



APPENDIX D
SAMPLE JOB STREAMS FOR RAD C -

D- 1

5- —  -- __~~~~~~~~ -:: — - -~~~~~~~~~~~~ _ _  — :~~~~-~~~~~~~~~~~ 
.5 - -5 -~~~~~~~~~~

-—-- - —- -— -.5-- - - f



~~~~IIr - - -—-

D .1 PERFORM SYNTAX AND STRUCTURAL ANALYSES

$ IDENT <userid> ,<user name >,<acc ’t. no.>
$ USERID <userid>$ <password >
$ SELECT BFCBGRC1/STEP 1-6
$ PRMFL 02, R/W ,R ,=zuserid>/<library file name>
$ PRMFL 09, R,S,<userid>/=zsource file name >
BU ILD LIBRA RY .
$ ENDJOB

Notes:
(1) SELECT stream STEP1—6 is required by the syntax analyzer.

All other JAVS activities can use the smaller STEP2—6.

(2) The LIMITS control card imbedded in the SELECT stream
specifies .99 CP hour and 40,000 lines of output. The
user can modify these limits by placing the following
control card before the JAVS command:

$ LIMITS <time> ,82K,—5K,<lines> —

(3) To process JOVIAL comments (they cannot be imbedded within
a JOVIAL statement) , replace BUILD LIBRARY with:

*CREATE LIBRARY = <library name> .
START .
BASIC.
FOR LIBRARY.
STRUCTURAL .
END FOR .

(4) To obtain the JAVS enhanced listing for each module during
this activity, follow BUILD LIBRARY with:

FOR LIBRARY.
PRINT ,MODULE .
END FOR.

(5) To obtain JAVS documentation reports within the same
activity, follow BUILD LIBRARY with:

DOCUMENT .

*
The default library name is TEST. The user may provide any library name
(up to eight characters) but in doing so must provide the library identifica—
t i on and s ta r t commands in subsequent JAVS processing jobs to ref lect the
non—default library name . See page B—2 for more information .

D- 2

D.2 OBTAIN JAVS DOCUMENTATION REPORT S

$ IDENT <userid > ,<user name> ,<acc ’t. no. >
$ USERID <userid >$<password>
$ SELECT BFCBGRC1/STEP2— 6
$ PRMFL 01 , R ,R ,<userid >/<library file name>
DOCUMENT .
$ ENDJOB

Notes:
(1) The LIMITS control card imbedded in the SELECT stream

specifies .60 CP hour and 20,000 lines of output . The
user can modify these limits by placing the following
control card before the JAVS command :

$ LIMITS <time> ,55K,—5K ,<lines >

(2) To obtain the JAVS control flow picture for each module ,
in addition to the other documentation reports , follow
the DOCUMENT command with:

FOR LIBRAR Y .
AS SIST , PICTURE.
END FOR.

or precede the DOCUMENT command with:
*OLD LIBRARY = TEST .

* START .
FOR L I B R A R Y .
ASS I ST ,P I CT URE .
END FOR.

*
The default library name is TEST. The user may provide any library name
(up to eight characters) but in doing so must provide the l ibrary iden t i f i -
cation and start commands in subsequent JAVS processing jobs to reflect the
non—default library name. See page B—2 for more information .

D— 3

_ _ _ _ -- ~~--- -~~~~~~~~~~ -~~~~~~~~~

—
-

~~~~~~~

D .3 INSTRUMENT A START-TERM SEQUENCE (JAVSTEXT ) *

$ IDENT <userid> ,<user name> ,<acc ’t. no.>
$ USERID <userid>$<password>
$ SELECT BFCBGRC1/STEP2-6
$ PRMFL 01 , R,R,<userid >/<library file name>
$ PRMFL 07, W ,S,<userid >/<instrumented source file name>
OLD LIBRARY = TEST. **
START.
PROBI ,STARTTEST = <options> .
PROBI ,STOPTEST = <options > .
PROBE ,JAVSTEXT = <text name> .

: $ ENDJOB

Notes :
(1) See D.2 note (1).

(2) Library identification and start commands are required
for PROBI commands.

(3) To manually insert the PROBI test case boundary calls,
remove the first four commands.

(4) To obtain a listing of the instrumented modules, follow
the PROBE command with:

PRINT ,JAVSTEXT = <text name> ,INSTRUMENTED = ALL.

* This job stream does not save the probed code on the database l ibrary .

**The default library name is TEST. The user may provide any library name
(up to eight characters) but in doing so must provide the library iden t if i c a—
tion and start commands in subsequent JAVS processing jobs to reflect the
non—default library name. See page B—2 for more information .

D-4

--5- ---- -- —.5 5---- —5 .5— —— - ----- -- — 3-



-

*
D.4 INSTRUMENT A START—TERM SEQUENCE (JAVSTEXT )

$ IDENT <userid> ,<user name> ,<acc ’t. no .>
$ USERID <userid>$<password>
$ PROGRA M RLHS
$ PRMFL H* ,R ,R ,B F C B G R C1/ M J A V S 2_ 6

$ PRMFL 02 , R/W ,R ,<user id>/<library file name>
$ PRMFL 07 , W ,S,<userid >/<instrumented source file name>
$ FILE lO ,C1R ,IL
$ FILE 03,X3R ,<libr ary file size>
$ FILE 04,X4R ,2L
$ LIMITS <time> ,55K ,-SK ,<lines>
ALTER LIBRAR Y = TEST.**
START.
PROBI ,STARTTEST = <options>.
PROBI ,STOPTEST = <options> .
PROBE ,JAVSTEXT = <text name> .$ ENDJOB

See D. 3 notes .

This job stream saves the probed code on the database library which
can substantially increase the library ’s file size.

**The default library name is TEST. The user may provide any libra-v name
(up to eight characters) but in doing so must provide the library identifi-
cation and start commands in subsequent JAVS processing jobs to reflect the
non—default library name . See page B—2 for more information .

D— 5 

- 5  -- 5- 5-~-~5-~~ -5~~~~~~~ —---.5--—- -



- - - 
-.- -

D. 5 COMP ILE INSTRUMENT ED SOURC E TEXT

$ IDENT <userid> ,<user name> ,<acc ’t. no.>
$ USERID <userid>$<password>
$ LOWLOAD
$ OPTION FORTRAN
$ JOVIAL NOPT,NDECK ,NAME/PRPOOL/,POOLOU/JP/
$ FILE JP ,X1S ,2L
$ SELECT BFCBCSO1/COMPILEB
$ LIMITS 1 ,49K
$ SELECT BFCBGRC2/PRPOOL
$ JOVIAL POOLIN/JP~,user COMPOOLS}/,NOPT,$ ETC NAME/<name>/
$ FILE JP,X1R ,2L
$ SELECT BFCBCSO 1/COMPILEB
$ LIMITS <time> ,<size> ,,<lines>
$ PRMFL S*,R,S,<userid>/<instrumented source file>
$ PRMFL C*,W,S,<usericl>/<instrumented object file>

user COMPOOL perm files

$ ENDJOB

Notes:

(1) Currently the backup JOCIT compiler (COMPILEB) is being used.

(2) The CP time in the second LIMITS control card should be
approximately 1.5 times the CP time required to compile the
uninstrumented text.

(3) The core size in the second LIMITS control card should be
approximately 1.25 times the size required to compile the
uninstrumented text.

(4) The instrumented source code may contain a $ in column one ( 1).
In this event , replace the PRMFL S* control card with:

$ DATA S* ,, COPY ,ENDFC
$ SELECTD <userid >/<instrumented source file >
$ ENDCOPY S~~

D-6

— _ 3 _ _~~~~~~~ — _ - ._--——-- _---~ - _~~~~~~N - - -  - - 5-



- -

D.6 TEST EX ECUTION AND POST-TEST ANALYSIS

$ IDENT <userid > ,<user name > ,-ac~ ’t. no.>
$ USERID <userid>$<password>
$ LOWLOAD
$ OPTION FORTRAN
$ SELECT BFCBGRC 1/JPROBESX
$ SELECT <userid>/<instrumented object file>
$ SELECT B F C B C S O1/ E X E C UT E B

$ LIMITS <time,,<size> , , <lines >
$ PRMFL 08, W ,S,<userid>/ <AUD IT file>

user fil es and data

$ SELECT BFCBGRC1ISTEP2-6 -—$ LIMITS <time> , 55K,—5K ,<l ines>
$ PRMFL 01 , R ,R ,<userith/<library file>
$ PRMFL 08~ R ,S,<userid>/<AUD IT file>OLD LIBRARY = TEST.
START.
AN AL YZ ER , MO DL ST
ANAL YZ ER , DD PATHS
TE ST.
$ ENDJOB

Notes:
(1) To obtain a printed listing of the input data , if the data

were on a perm file, insert the following control cards
before  selecting STEP2— 6 :

$ CONVE R
$ INPUT NMEDIA
$ PRMFL IN,R ,S,<userid > /<data file>
$ PRINT OT

(2) The EXECUTEB select stream supplies JOVIAL system routines
used by the backup JOC IT compiler . This can be changed
to EXECUTE if all software modules were compiled using
a newer version of JOCIT .

(3) Additional instrumented files can be loaded .

(4) In an overlay environment , JPROBESX must be loaded in
the main link.

(5) The AUDIT f i le  can be a scratch disk f i l e  or magnet ic
tape , instead of a perm file.

~The d e f a u l t  l ib rary  name is TEST. The user may provide any library name
(up to eight characters) but in doing so must provide the library identif i—
cation and s tar t  commands in subsequent JAVS processing jobs to reflect the
non—default library name. See page B—2 for more information .

L 

D-7

~ 

--5--- - - — - - - — --——-.5---~~~~~~ 
-



D .7 RETESTING ASSISTANCE (REACHING SETS)

$ IDENT <userid> ,<user name> ,<acc ’t. no.>
• $ USERID <userid>$<password>
-

- $ SELECT BFCBGRC 1/STEP2-6
- OLD LIB~~RY = TEST! 

R ,R ,<userid>/<library file name >

- 
START.
ASSIST,REACHING SET,<target> ,{opt-jons}.

$ ENDJOB

The default library name is TEST. The user may provide any library na~ c
(up to eigh t characters) but in doing so must provide the library identifi-
cation and start commands in subsequent JAVS processing jobs to reflect the
non—default library name. See page B—2 for more information.

j —
- 

- D—8

5-— 
-
~~~~~~5---— ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ — -~~~~~~ -- - - - _~~~~~~~~~~ ~~~~~~~~~~~~~~~ 

- - -
- - —---

~~~~~~~~~~~~~~~~~~~~



D.8 SELECT STREAMS

In the event that the user wishes to modify the control cards nested in
the three JAVS SELECT con t rol  cards , the expansions are as follows :

- 

- $ SELECT BFCBGRC1/STEPI-6 contains

$ PROGRAM RLHS
$ PRMFL H* ,R ,R , BFCBGRC 1/ M J AVS 1_ 6
$ LIMITS 99, 82K , -5K , 40000
$ FILE 03 , X3R , 1OR
$ F I L E  10 , C 1R , lL
$ FILE 04 , X4R , 2L

$ SELECT BFCBGRC1/STEP2-6 contains

$ PROGRAM RLHS
$ PRMFL H* ,R ,R ,B F C B G R C1/ MJ A V S 2_ 6

$ FILE 10, d R . lL
$ FILE  02 , X2R , 20R
$ L I M I T S  60 , 55K , -5K , 20000
$ FILE 03 , X3R , 1OR
$ FILE 04 , X4R , 2L

$ SELECT BFCBGRC1 /JPROBESX contains
* $ SELECT BFCBGRC2 /BPRCMPL

$ SELECT BFCBGRC2/B PROBE
$ SELECT BFCBGRC2 / BPROB I -X
$ SELECT BFC B GRC2 / BPR OBM-X
$ SELECT BFCBGRC2/BPROBD -X

D-9 

- —~~~-— -—- - - - --— - ----— -—- -5- —~~~~~ — - - — - -
~~



-
~~~

5--
~~~~~~~~~~~~

- - -- ——
~~~~ -

.

~~~~-~~~~~- ~~~ - - - - - -~~~~~ -— -~~~~~~~

APPENDIX E
- TIME AND SIZE ESTIMATIONS

I: 
-

E- 1



TABLE E . l
FILE SIZE ESTIMATION

*
- - 

File II File Estimation

01, 02 Library 15—20 llinks/module

(LIBOLD , 300 llinks/l000 source statements

LIBNEW) 4—5 times source f i le size (llinks )

03 LIBWSP 10 llinks

04 COMAUX 2 ilinks

07 LPIJNCH 8 llinks/module

(instrumented 100 llinks/l000 source statements
source) 

2 times uninstrumented source file size (ilinks)

Instrumented .3 times LPUNCH (llinks )

object file 2 times uninstrumented object file size

08 AUDIT Minimum size (no execution tracing) is:

(n umber of probed DD— paths x number of

test  cases x .2 llinks)

Maximum s ize is dependent upon execution

behavior and level of t rac ing

09 READER .04 llinks/source card

10 COMMAC 1 llink

*
These es t imat ions  are derived from testing the SAC Force ~1anagement InformationSystem.

E—2



— 
—-———-— — 

-— .J~~~~~~ _~~~’?~~~! —-n.——- - — - —— ~~~~~~~~~~~~~~~~

TABLE E . 2

CP Time Estimation

CF Hour!
- - . Task/Command CF Hour/Module 1000 Statements

BUILD LIBRARY .006 .1

DOCUMENT . 006 . 1

PROBE .005 .07

Compile instrumented code .001 .02

Test Execution 1.5 times execution time for uninstrumented

program
*TEST 3—6 times Test Execution time

.01 CF hour/module

*
* 

Very rough estimates , since TEST C? time depends
heavily on the size of the AUDIT file.

-i

E— 3

~~~lL.lli ~ ~~~~~~~~~~~~~~~ ---.5—-- -— — — —- -~~~~~-—-— —~~~~~~~~~~~~—*.~~~~——-———-—-—.-—-—--•--- ---—--- - - — 5-—


RESEARCH CORP SANTA BARBARA CALIFAD—AOI0 103

~~~~~~~~~cLASS O
A
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ !TR~77!6.V!1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I a
I END

I DATEI FILMED

6—77

a

~ 2.8

~~II
~ ~: ~~~

I ~

11111’ .25 Illll~ uhII~•~
II U N I ~I

N. ~~~~ A

APPENDIX F

JAVS INSTAL LATION REQUIR ~ 1ENTS

4

F—i

TABLE F.l

JAVS INSTALLATION AT RADC

DATE October 1976
VERSION 2.0 non—overlay, 2.0 overlay
COMPUTER HIS 6180
OPERATING SYSTEM GCOS version G update 3
COMPILER JOCIT JOVIAL/J3 version 042275
NON-STANDARD FEATURES JOVIAL MONITOR , FORTRAN random I/O
CONFIGURATION batch, unlinked ; batch, linked

PROCESSING CORE REQUIREMENTS:

Program File Type Load Size Process

MJAVS1 6 H* 81K Complete JAVS overlay
MJAVS2—6 H* 54K JAVS overlay w/o BASIC
EXECS1 H* 84K BASIC
EXECS2 H* 84K STRUCTURAL
EXECS3 11* 57K INSTRUMENT
EXECS4 H* 54K ASSIST
EXECS5 H* 53K DEPENDENCE
EXECS6 11* 54K ANALYZER
JPROBESX select 4K Test Execution

FILES:

Number Name Allocation Usage Description (1)

1 LIBOLD save R/W 300 W/rec ords , R, U, F
2 LIBNEW save R/W 300 W/ record , R, U, F
3 LIBWSP scratch R/W 300 W / record , R, U, F
4 COMAUX scratch R/W BCD, card image

(2) 5 COMMAN card reader R system input, BCD
(3) 5 COMMAC card reader R system input, BCD

6 LOUT printer W system output
7 LPUNCH compile W BCD, card image
8 AUDIT save R/W Binary, 8 W/recor d
9 READER source R BCD , card image

(3)10 COMMAN scratch R/W BCD, card image

Notes:
(1) W words , R = random, U unpartioned, F — fixed length
(2) JAVS 2.0 non—overlay version
(3) JAVS 2.0 overlay version

F— 2

L

TABLE F .2
JAyS INSTALLATION AT SAC HEADQUARTERS

DATE January 1977
VERSION 2.0 overlay
COMPUTER HIS 6180
OPERATING SYSTEM WWMCCS
COMPILER JOCIT JOVIAL/J3 version 042275
NON—STANDARD FEATURES JOVIAL MONITOR, FORTRAN random I/O
CONFIGURATION batch , linked

PROCESSIN G CORE REQUIREMENTS:

Program File Load Size Process

MJAVS1—6 1-1* 81K Complete JAVS overlay
MJAVS2—6 H* 54K JAVS overlay w/o BASIC
JPROBESX select 4K Test Execution

FILES:

Number Name Allocation Us~~e Description (1)

1 LIBOLD save R/W 300 W/records , R, U, F
2 LIBNEW save R/W 300 W/record , R, U, F
3 LIBWSP scratch RIW 300 W/record , R, U, F
4 COMAUX scratch R/1J BCD, card image
5 COMMAC card reader R system input , BCD
6 LOUT printer W system output
7 LPUNCH compile W BCD, card image
8 AUDIT save R/W Binary , 8 W/record
9 READER source R BCD , card image
10 CO~~IAN scratch R/W BCD, card image

Note:
(1) W — words , R — random , U unpartioned , F = fixed length.

F— 3

APPENDIX G

JAVS UTILIZATI ON CHECKL IST

I

G—].

1. Prepare source code:

a. Insert JAVSTEXT directive as the first statement of each START—TERN
V sequence.

If the START—TERN is a program, CLOSE, or PROC use:

“.JAVSTEXT <name> COMPUTE (<COMPOOL name>)”

The parenthetical name informs JAVS that one or more COMPOOLs are
• referenced , although the COMPOOL name is not checked for validity.

If the START—TERN is a COMPOOL use:

“.JAVSTEXT <name> PRESET”

See page 3—5 in the User ’s Guide and page 1—7 in the Reference Manual
for examples.

Only one COMPOOL can be put on the JAVS data base Library for each
execution of the BASIC processing step (syntax analysis). COMPOOLs
must not be processed by the structural analyzer (STRUCTURAL command
keyword), thus the BUILD LIBRARY macro command cannot be used when
processing COMPOOLS and executable source code together.

b. If any START—TERM sequence is an external CLOSE (i.e., the first
module following the START is a CLOSE), remove the CLOSE <n.~ne>
statement before inputting the source code to JAyS. Insert the
CLOSE statement in the instrumented source code before compilation.

c. If JAVS computation directives (ASSERT, EXPECT, TRACE, OFFTRACE) are
to be used, insert them into the source code following normal JOCIT
programming rules for placement and expression syntax. See Sec. 1.5
in the Reference Manual for description of these directives.

2. Create files

a. Complete JAVS processing of the source code will require creation of
the following files:

• File code Name Type Contents

01,02 LIBNEW Random JAVS data base library
LIBOLD

07 LPUNCH Sequential Instrumented source
08 AUDIT Sequential Execution Trace

See page E—2 of the User ’s Guide for size estimations of these files.

b. Additional files which the user may wish to use are the sequential
C* file containing the instrumented object code (see page D 6 ,
User ’s Guide) and a random access H* file containing the user’s
program with instrumented code.

G— 2

3. Perform syntax and structural analyses

a. Execute the job stream on page D—2 , User ’s Guide (or one which
employs BASIC and STRU CTURAL keywords ; see Sec. 5 of the Reference

V Manual under these keyword headings).

b. Check .JAVS output for any errors. The complete list of errors is in
• Appendix B of the Reference Manual.

c. If necessary , modify source and reprocess this step .

4. Obtain JAVS documentation reports

• Execute the job stream on page D—3, User’s Guide or

• Use any of the PRINT, ASSIST and DEPENDENCE commands to produce the
desired documentation reports. See Sec. 5 of the Reference Manual
under the appropriate keyword headings for sample commands and
output.

5. Instrument the source code

a. For each START—TERN (JAVSTEXT) execute the job stream on page D—4 ,
User ’s Guide .

b. The PROBI commands direct JAV S to insert calls to the PROBI data
collection routine to initiate and terminate test cases at specified
statements in the source code (statement numbers appear in the JAV S
module listings). See Sects. 5.3 and 6, User’s Guide and page 2—15,
Reference Manual for PROBI description . The test case initiation
and termination PROBI calls can be inserted manually (e.g., under
the GCOS EDIT system) in the instrumented or uninstrumented source
code , or they can be inserted at the direction of the PROBI command.
See page 2—17 , Reference Manual for a sample listing of probed code.

6. Compile the instrumented source text

a. Use the job stream on page D—6 , User’s Guide , supplying any COMPOOLs
(in addition to the JAVS PRPOOL) required for compilation .

b. JAVS instrumentation modifies certain control statements (e.g., an
IF becomes an IFEITH). This can cause a statement to be continued
on the next line. If the continuation line contains a $ in column 1,
GCOS and WWMCCS will treat it as a control card. If this occurs , use
the control cards given in note (4), page D—6.

7. Load , execute and analyze program coverage

a. Use the job stream on page D—7 , Us er ’s Guide as a basis for determining
the control cards needed for executing and analyzing the program.

G-3

• ~~~~~~~~~~~~~~~~~
- —

b. The job control cards required for loading and executing
the program differ from the user’s normal sequence as follows:

(1) The JAVS data collection routines must be loaded
V (JPROBESX). If the user’s program is in overlay form,

load JPROBESX in the main link.

(2) Load the instrumented object code instead of the original
object code (in the appropriate link, if overlaid).

(3) Supply the AUDIT file (file code 08) for the execution
trace results.

c. The JAVS post—test analysis (following user files and data) control
cards include the AUDIT file (written during execution) and the JAVS
data base library (LIBOLD on file code 01).

Figure G.l shows the typical flow of operations in using JAyS. JAVS
commands and the data base library are used in all activities except the
compilation. The files used in the figure are the library (02,01), LPUN CH
(07), object (C*), and AUDIT (08).

G—4

~
‘

PROBE

F:LE :o:: ______________

~ INST~~~E~~E I
SO .RCE

F IL E COD E S —

‘RPOOL

COM PILE / --

~~

~S~~~ S

FILE C O E

S~~~~ E’ , C : ~~~~~~_ 2 _ ~1~1
JPRQ~~ SX

~~~~~ 
L3AC 

~~~~~~
E
~~~ A S

~ r DATA 
~~~~~ ION y 

~
- CCMMMOSf~

~~~~~~POR~ S

Figure G.l. Flowchart of JAVS Utilization

C-s

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


P INDEX

• Analyzer 1—3, 2—3 , 7—1, 7—3 , 10—7 , 10—8

Assertions 2—2 , 10—3, 10—10

Assist 1—3 , 2—3 , 8—2

Basic 1—3 , 2—3 , 3—5 , 10—7, 10—9

Build Library 3—1, 9—2

Code Optimization 1—2

Collateral Testing 8—1

Command Forma t 2—3

• Commands 2—3 , 9—1 , 9—2

COMPOOL 3—1, 6—4, 6—1
• Computer Directives 1—2 , 2—2, 5—1

Computer Documentation 1—2 , 4—1

Control Cards D—l

Control Flow Picture 4—12

• Cross Reference 4—4

Data Base Library 3—1 , 3—6 , C—2

Data Collection Procedures 6—1 , 6—4 , 6—5

DD—Path 1—2 , 3—1 , 4—11

Decision Outway 1—2

Decision—to—Decision Path (DD—Path) 1—2

Dependence 1—3 , 2—3

Document 4—1, 4—3 , 9—2 , 10—9

Documentation 1—2 , 4—1

Files 3—1 , 5—1 , 6—1 , C—l , E—2

Functional Tests 10—7

Input to JAVS 2—1

Instrument 1—3 , 2—3 , 10—7

Instrumentation 1—3 , 2—2 , 5—1

1—1

-

I
IND EX (Cont .)

V JAVS Commands (see Commands) 2—3 , A—2

JAVS COMPOOL for Data Collection 6—4

JAVS Computation Directives 1—2, 2—2 , 5—1 , 6—1

JAVS Identification Directives 2—2 , 3—5

JAVSTEXT 3—5, 4—1, 5—3

Macro Commands 2—3, 9—2 , B—i

Module 3—1

Module Interaction Matrix 4—5, 4—6

Module Invocation Reports 4—9 , 4—10

Module Listing 4—8

Module Trace and Report 7—7

Overview of JAVS 1—4

Partitioning the Software 10—2

Predicate 81 , 8—2

Preliminary Steps 2—2

PROBE 5—1, 9—2

PROBI Conmmnd 6—1

PROBI Data Collection Routine 6—1 , 6—4

Processing Sequence 2—2

Reaching Set 8—2, 8—3

Retesting 1—2 , 1—3 , 8—1

Single—Module Testing 8—1, 10—5, 10—10

START—TERN Sequence 2—2 , 3—1 , 4—1 , 5—3

STRUCTURAL 1—3 , 2—3 , 3—6 , 10—7, 10—9

Structural Analysis 1—3 , 2—2 , 3 l

Symbol Cross Reference 44

Syntax Analysis 1—3 , 2—2 , 3-1

System—wide Testing 10—4, 10—5, 10—10

• 1—2

INDEX (Cont.)

I TEST 7—1 , 7—3 , 9—2

V
Test Case Identification 6—1 , 6—4

• iest Coverage Reports 7—4, 7—5 , 7—8

Test Execution 1-3, 6—1 , 10—7

Test File Control Parameter 6—4, 6—5

Test Goals 10—4, 10—5

Testing Assistance 1—3

Testing Methodology 10—1, 10—9

Test Object 10—1

Test Plan 10—7

Test Resources 10—3

Test St rategy 10—5
• Test Ta rgets 8—i , 8— 3

Test Team 10—4

I

1—3

-~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~ • . ••~~~~~~~~~~~~ ••

REFERENCES

1. C. Gannon and N. B. Brooks, JAVS Technical Report , Vol. 2: Reference

• Manual , Gen er al Research Corporation CR—1—722 , April 1977.

2. N. B. Brooks and C. Cannon , JAVS Technical Report , Vol. 3: Methodology
Repor t , General Research Corporat ion C R — 1 — 7 2 2 , unda ted .

R—1

•—— • —‘--•. ---~~~~~~~~ • ••-—

~ rruc s~sivw
BASE uNrrs:

Quantity Unit St Symbol Formula

• length metre in
V ova~ kg

time second a
• electric Current ampere A

• thermodynamic temperature kelv in K
• amount of substance mole mol
• luminous intensity candela cd

SUPPLEMD1TAR Y UNITS :
plane ang le radian rad
solid ang le st erad Ian Sr

DER!VTh UNITS:
Acceleration metre per second squared • • •

activity (of a rad ioact ive sou rce) d is integrat ion per second • • •
(d i.int egr ati on) Is

angu lar acceler ation radian per second squared .• • rids
angul ar ve locity radian per second • • •

rad~
ares square metre •. . in
density kilogram per cubi c metre • •

kg’m
electric capac itance farad F
electrical conduc tance s iemens S A’V
electric field strength volt per metre • .• VIm
electr ic inductance henry H
electric potentia l difference volt ¶.‘ W’A

• electr ic resista nce ohm V A
electromot ive force volt V W A
energy joule Nm
entropy joule per kelvin •.. JfK
force newton N kg.m s
frequency hertz Hz (cyc le) is
illuzn inance lux lx ITTVTO
luminance candela per square metre •. cd~rn• luminous flux lumen Im cd-sr
magnetic field strength ampere per metre .. • Aim

• magnetic flux weber Wb V-s
magnetic flux density tesla T Wbi’in
magnetomo tive force ampere A
power watt Vi
pressure pascal Pa N’m
quantity of electricity coulomb C A -s

• quantity of hest joule I N-rn
radiant inten si ty w at t per ster edian • . W s r
speci fic hea t j oule per ki logr am-kelv in • • J l kg-K

• st ress pasca l Pa N:m
therm a l conductivi ty watt per metre -kelvi n •.

ve locity metre per second • •
m i s

viscosi ty , dynamic pascal-second • • • P*5
viscosi ty, kinematic square metre per second • xn

• voltage volt V W ;A
volume cubic metre •. in
wave ri umber reciprocal metre ,. (Wave)lm
wor k joule I N-rn

SI PR~~1XES :

Multip lication Factors Prefis SI Symbol

1 000 000 000000 10” lets T
1 000 tiOO 000 = 10’ gig s C

1 000 000 10 inega
1 OO0 .~~7V’ kilo

100 — 10’ hecto
10- 10 dek. da

0 i~~~10~~ decl d
Got — 10 ’ canW c

0.001 • 10 — ’ m u l l in
0 000 007 - 10 S mkr

0 000 000 001 — 10W ’ nano it

0.000 000 000 001 - 1 0 ” P1CC
0 000 000 000 Q00 001 - 10-” lamb

0.000 000 000 000 000 001 — 1 0 ” atbu a

To be avoided where possible

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


